Information-Theoretic Methods in Data Science

Download Information-Theoretic Methods in Data Science PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108427138
Total Pages : 561 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Information-Theoretic Methods in Data Science by : Miguel R. D. Rodrigues

Download or read book Information-Theoretic Methods in Data Science written by Miguel R. D. Rodrigues and published by Cambridge University Press. This book was released on 2021-04-08 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first unified treatment of the interface between information theory and emerging topics in data science, written in a clear, tutorial style. Covering topics such as data acquisition, representation, analysis, and communication, it is ideal for graduate students and researchers in information theory, signal processing, and machine learning.

Statistical Foundations of Data Science

Download Statistical Foundations of Data Science PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429527616
Total Pages : 942 pages
Book Rating : 4.4/5 (295 download)

DOWNLOAD NOW!


Book Synopsis Statistical Foundations of Data Science by : Jianqing Fan

Download or read book Statistical Foundations of Data Science written by Jianqing Fan and published by CRC Press. This book was released on 2020-09-21 with total page 942 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.

Multivariate Reduced-Rank Regression

Download Multivariate Reduced-Rank Regression PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 1071627937
Total Pages : 420 pages
Book Rating : 4.0/5 (716 download)

DOWNLOAD NOW!


Book Synopsis Multivariate Reduced-Rank Regression by : Gregory C. Reinsel

Download or read book Multivariate Reduced-Rank Regression written by Gregory C. Reinsel and published by Springer Nature. This book was released on 2022-11-30 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an account of multivariate reduced-rank regression, a tool of multivariate analysis that enjoys a broad array of applications. In addition to a historical review of the topic, its connection to other widely used statistical methods, such as multivariate analysis of variance (MANOVA), discriminant analysis, principal components, canonical correlation analysis, and errors-in-variables models, is also discussed. This new edition incorporates Big Data methodology and its applications, as well as high-dimensional reduced-rank regression, generalized reduced-rank regression with complex data, and sparse and low-rank regression methods. Each chapter contains developments of basic theoretical results, as well as details on computational procedures, illustrated with numerical examples drawn from disciplines such as biochemistry, genetics, marketing, and finance. This book is designed for advanced students, practitioners, and researchers, who may deal with moderate and high-dimensional multivariate data. Because regression is one of the most popular statistical methods, the multivariate regression analysis tools described should provide a natural way of looking at large (both cross-sectional and chronological) data sets. This book can be assigned in seminar-type courses taken by advanced graduate students in statistics, machine learning, econometrics, business, and engineering.

Principles and Methods for Data Science

Download Principles and Methods for Data Science PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0444642129
Total Pages : 498 pages
Book Rating : 4.4/5 (446 download)

DOWNLOAD NOW!


Book Synopsis Principles and Methods for Data Science by :

Download or read book Principles and Methods for Data Science written by and published by Elsevier. This book was released on 2020-05-28 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Principles and Methods for Data Science, Volume 43 in the Handbook of Statistics series, highlights new advances in the field, with this updated volume presenting interesting and timely topics, including Competing risks, aims and methods, Data analysis and mining of microbial community dynamics, Support Vector Machines, a robust prediction method with applications in bioinformatics, Bayesian Model Selection for Data with High Dimension, High dimensional statistical inference: theoretical development to data analytics, Big data challenges in genomics, Analysis of microarray gene expression data using information theory and stochastic algorithm, Hybrid Models, Markov Chain Monte Carlo Methods: Theory and Practice, and more. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Handbook of Statistics series - Updated release includes the latest information on Principles and Methods for Data Science

Introduction to High-Dimensional Statistics

Download Introduction to High-Dimensional Statistics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000408329
Total Pages : 364 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Introduction to High-Dimensional Statistics by : Christophe Giraud

Download or read book Introduction to High-Dimensional Statistics written by Christophe Giraud and published by CRC Press. This book was released on 2021-08-25 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the first edition: "[This book] succeeds singularly at providing a structured introduction to this active field of research. ... it is arguably the most accessible overview yet published of the mathematical ideas and principles that one needs to master to enter the field of high-dimensional statistics. ... recommended to anyone interested in the main results of current research in high-dimensional statistics as well as anyone interested in acquiring the core mathematical skills to enter this area of research." —Journal of the American Statistical Association Introduction to High-Dimensional Statistics, Second Edition preserves the philosophy of the first edition: to be a concise guide for students and researchers discovering the area and interested in the mathematics involved. The main concepts and ideas are presented in simple settings, avoiding thereby unessential technicalities. High-dimensional statistics is a fast-evolving field, and much progress has been made on a large variety of topics, providing new insights and methods. Offering a succinct presentation of the mathematical foundations of high-dimensional statistics, this new edition: Offers revised chapters from the previous edition, with the inclusion of many additional materials on some important topics, including compress sensing, estimation with convex constraints, the slope estimator, simultaneously low-rank and row-sparse linear regression, or aggregation of a continuous set of estimators. Introduces three new chapters on iterative algorithms, clustering, and minimax lower bounds. Provides enhanced appendices, minimax lower-bounds mainly with the addition of the Davis-Kahan perturbation bound and of two simple versions of the Hanson-Wright concentration inequality. Covers cutting-edge statistical methods including model selection, sparsity and the Lasso, iterative hard thresholding, aggregation, support vector machines, and learning theory. Provides detailed exercises at the end of every chapter with collaborative solutions on a wiki site. Illustrates concepts with simple but clear practical examples.

Introduction to Nonparametric Estimation

Download Introduction to Nonparametric Estimation PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387790527
Total Pages : 222 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Nonparametric Estimation by : Alexandre B. Tsybakov

Download or read book Introduction to Nonparametric Estimation written by Alexandre B. Tsybakov and published by Springer Science & Business Media. This book was released on 2008-10-22 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developed from lecture notes and ready to be used for a course on the graduate level, this concise text aims to introduce the fundamental concepts of nonparametric estimation theory while maintaining the exposition suitable for a first approach in the field.

Scientific and Technical Aerospace Reports

Download Scientific and Technical Aerospace Reports PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Scientific and Technical Aerospace Reports by :

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1992-06 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Handbook of Multiple Comparisons

Download Handbook of Multiple Comparisons PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429633882
Total Pages : 418 pages
Book Rating : 4.4/5 (296 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Multiple Comparisons by : Xinping Cui

Download or read book Handbook of Multiple Comparisons written by Xinping Cui and published by CRC Press. This book was released on 2021-11-18 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by experts that include originators of some key ideas, chapters in the Handbook of Multiple Testing cover multiple comparison problems big and small, with guidance toward error rate control and insights on how principles developed earlier can be applied to current and emerging problems. Some highlights of the coverages are as follows. Error rate control is useful for controlling the incorrect decision rate. Chapter 1 introduces Tukey's original multiple comparison error rates and point to how they have been applied and adapted to modern multiple comparison problems as discussed in the later chapters. Principles endure. While the closed testing principle is more familiar, Chapter 4 shows the partitioning principle can derive confidence sets for multiple tests, which may become important as the profession goes beyond making decisions based on p-values. Multiple comparisons of treatment efficacy often involve multiple doses and endpoints. Chapter 12 on multiple endpoints explains how different choices of endpoint types lead to different multiplicity adjustment strategies, while Chapter 11 on the MCP-Mod approach is particularly useful for dose-finding. To assess efficacy in clinical trials with multiple doses and multiple endpoints, the reader can see the traditional approach in Chapter 2, the Graphical approach in Chapter 5, and the multivariate approach in Chapter 3. Personalized/precision medicine based on targeted therapies, already a reality, naturally leads to analysis of efficacy in subgroups. Chapter 13 draws attention to subtle logical issues in inferences on subgroups and their mixtures, with a principled solution that resolves these issues. This chapter has implication toward meeting the ICHE9R1 Estimands requirement. Besides the mere multiple testing methodology itself, the handbook also covers related topics like the statistical task of model selection in Chapter 7 or the estimation of the proportion of true null hypotheses (or, in other words, the signal prevalence) in Chapter 8. It also contains decision-theoretic considerations regarding the admissibility of multiple tests in Chapter 6. The issue of selected inference is addressed in Chapter 9. Comparison of responses can involve millions of voxels in medical imaging or SNPs in genome-wide association studies (GWAS). Chapter 14 and Chapter 15 provide state of the art methods for large scale simultaneous inference in these settings.

Modern Statistical Methods for Health Research

Download Modern Statistical Methods for Health Research PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030724379
Total Pages : 506 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Modern Statistical Methods for Health Research by : Yichuan Zhao

Download or read book Modern Statistical Methods for Health Research written by Yichuan Zhao and published by Springer Nature. This book was released on 2021-10-14 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together the voices of leading experts in the frontiers of biostatistics, biomedicine, and the health sciences to discuss the statistical procedures, useful methods, and novel applications in biostatistics research. It also includes discussions of potential future directions of biomedicine and new statistical developments for health research, with the intent of stimulating research and fostering the interactions of scholars across health research related disciplines. Topics covered include: Health data analysis and applications to EHR data Clinical trials, FDR, and applications in health science Big network analytics and its applications in GWAS Survival analysis and functional data analysis Graphical modelling in genomic studies The book will be valuable to data scientists and statisticians who are working in biomedicine and health, other practitioners in the health sciences, and graduate students and researchers in biostatistics and health.

American Doctoral Dissertations

Download American Doctoral Dissertations PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 776 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis American Doctoral Dissertations by :

Download or read book American Doctoral Dissertations written by and published by . This book was released on 2001 with total page 776 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Mathematical Statistics

Download Mathematical Statistics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498722709
Total Pages : 487 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Statistics by : Peter J. Bickel

Download or read book Mathematical Statistics written by Peter J. Bickel and published by CRC Press. This book was released on 2015-11-04 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Statistics: Basic Ideas and Selected Topics, Volume II presents important statistical concepts, methods, and tools not covered in the authors' previous volume. This second volume focuses on inference in non- and semiparametric models. It not only reexamines the procedures introduced in the first volume from a more sophisticated point o

Nonparametric Goodness-of-Fit Testing Under Gaussian Models

Download Nonparametric Goodness-of-Fit Testing Under Gaussian Models PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387215808
Total Pages : 471 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Nonparametric Goodness-of-Fit Testing Under Gaussian Models by : Yuri Ingster

Download or read book Nonparametric Goodness-of-Fit Testing Under Gaussian Models written by Yuri Ingster and published by Springer Science & Business Media. This book was released on 2012-11-12 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the modern theory of nonparametric goodness-of-fit testing. It fills the gap in modern nonparametric statistical theory by discussing hypothesis testing and addresses mathematical statisticians who are interesting in the theory of non-parametric statistical inference. It will be of interest to specialists who are dealing with applied non-parametric statistical problems relevant in signal detection and transmission and in technical and medical diagnostics among others.

Current Index to Statistics, Applications, Methods and Theory

Download Current Index to Statistics, Applications, Methods and Theory PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 788 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Current Index to Statistics, Applications, Methods and Theory by :

Download or read book Current Index to Statistics, Applications, Methods and Theory written by and published by . This book was released on 1994 with total page 788 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Current Index to Statistics (CIS) is a bibliographic index of publications in statistics, probability, and related fields.

Minimax Estimation in Regression and Random Censorship Models

Download Minimax Estimation in Regression and Random Censorship Models PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 148 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Minimax Estimation in Regression and Random Censorship Models by : Eduard N. Belitser

Download or read book Minimax Estimation in Regression and Random Censorship Models written by Eduard N. Belitser and published by . This book was released on 2000 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Resampling-Based Multiple Testing

Download Resampling-Based Multiple Testing PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 9780471557616
Total Pages : 382 pages
Book Rating : 4.5/5 (576 download)

DOWNLOAD NOW!


Book Synopsis Resampling-Based Multiple Testing by : Peter H. Westfall

Download or read book Resampling-Based Multiple Testing written by Peter H. Westfall and published by John Wiley & Sons. This book was released on 1993-01-12 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combines recent developments in resampling technology (including the bootstrap) with new methods for multiple testing that are easy to use, convenient to report and widely applicable. Software from SAS Institute is available to execute many of the methods and programming is straightforward for other applications. Explains how to summarize results using adjusted p-values which do not necessitate cumbersome table look-ups. Demonstrates how to incorporate logical constraints among hypotheses, further improving power.

New Developments in Statistical Information Theory Based on Entropy and Divergence Measures

Download New Developments in Statistical Information Theory Based on Entropy and Divergence Measures PDF Online Free

Author :
Publisher : MDPI
ISBN 13 : 3038979368
Total Pages : 344 pages
Book Rating : 4.0/5 (389 download)

DOWNLOAD NOW!


Book Synopsis New Developments in Statistical Information Theory Based on Entropy and Divergence Measures by : Leandro Pardo

Download or read book New Developments in Statistical Information Theory Based on Entropy and Divergence Measures written by Leandro Pardo and published by MDPI. This book was released on 2019-05-20 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents new and original research in Statistical Information Theory, based on minimum divergence estimators and test statistics, from a theoretical and applied point of view, for different statistical problems with special emphasis on efficiency and robustness. Divergence statistics, based on maximum likelihood estimators, as well as Wald’s statistics, likelihood ratio statistics and Rao’s score statistics, share several optimum asymptotic properties, but are highly non-robust in cases of model misspecification under the presence of outlying observations. It is well-known that a small deviation from the underlying assumptions on the model can have drastic effect on the performance of these classical tests. Specifically, this book presents a robust version of the classical Wald statistical test, for testing simple and composite null hypotheses for general parametric models, based on minimum divergence estimators.

Partially Linear Models

Download Partially Linear Models PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642577008
Total Pages : 210 pages
Book Rating : 4.6/5 (425 download)

DOWNLOAD NOW!


Book Synopsis Partially Linear Models by : Wolfgang Härdle

Download or read book Partially Linear Models written by Wolfgang Härdle and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last ten years, there has been increasing interest and activity in the general area of partially linear regression smoothing in statistics. Many methods and techniques have been proposed and studied. This monograph hopes to bring an up-to-date presentation of the state of the art of partially linear regression techniques. The emphasis is on methodologies rather than on the theory, with a particular focus on applications of partially linear regression techniques to various statistical problems. These problems include least squares regression, asymptotically efficient estimation, bootstrap resampling, censored data analysis, linear measurement error models, nonlinear measurement models, nonlinear and nonparametric time series models.