Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Multiple Integrals In The Calculus Of Variations And Nonlinear Elliptic Systems
Download Multiple Integrals In The Calculus Of Variations And Nonlinear Elliptic Systems full books in PDF, epub, and Kindle. Read online Multiple Integrals In The Calculus Of Variations And Nonlinear Elliptic Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. (AM-105), Volume 105 by : Mariano Giaquinta
Download or read book Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. (AM-105), Volume 105 written by Mariano Giaquinta and published by Princeton University Press. This book was released on 2016-03-02 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: A classic treatment of multiple integrals in the calculus of variations and nonlinear elliptic systems from the acclaimed Annals of Mathematics Studies series Princeton University Press is proud to have published the Annals of Mathematics Studies since 1940. One of the oldest and most respected series in science publishing, it has included many of the most important and influential mathematical works of the twentieth century. The series continues this tradition as Princeton University Press publishes the major works of the twenty-first century. To mark the continued success of the series, all books are available in paperback and as ebooks.
Book Synopsis Official Summary of Security Transactions and Holdings Reported to the Securities and Exchange Commission Under the Securities Exchange Act of 1934 and the Public Utility Holding Company Act of 1935 by :
Download or read book Official Summary of Security Transactions and Holdings Reported to the Securities and Exchange Commission Under the Securities Exchange Act of 1934 and the Public Utility Holding Company Act of 1935 written by and published by . This book was released on 1974 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Regularity Results for Nonlinear Elliptic Systems and Applications by : Alain Bensoussan
Download or read book Regularity Results for Nonlinear Elliptic Systems and Applications written by Alain Bensoussan and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects many helpful techniques for obtaining regularity results for solutions of nonlinear systems of partial differential equations. These are applied in various cases to provide useful examples and relevant results, particularly in such fields as fluid mechanics, solid mechanics, semiconductor theory and game theory.
Book Synopsis Nonlinear Functional Analysis and Its Applications, Part 2 by : Felix E. Browder
Download or read book Nonlinear Functional Analysis and Its Applications, Part 2 written by Felix E. Browder and published by American Mathematical Soc.. This book was released on 1986 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs by : Mariano Giaquinta
Download or read book An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs written by Mariano Giaquinta and published by Springer Science & Business Media. This book was released on 2013-07-30 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume deals with the regularity theory for elliptic systems. We may find the origin of such a theory in two of the problems posed by David Hilbert in his celebrated lecture delivered during the International Congress of Mathematicians in 1900 in Paris: 19th problem: Are the solutions to regular problems in the Calculus of Variations always necessarily analytic? 20th problem: does any variational problem have a solution, provided that certain assumptions regarding the given boundary conditions are satisfied, and provided that the notion of a solution is suitably extended? During the last century these two problems have generated a great deal of work, usually referred to as regularity theory, which makes this topic quite relevant in many fields and still very active for research. However, the purpose of this volume, addressed mainly to students, is much more limited. We aim to illustrate only some of the basic ideas and techniques introduced in this context, confining ourselves to important but simple situations and refraining from completeness. In fact some relevant topics are omitted. Topics include: harmonic functions, direct methods, Hilbert space methods and Sobolev spaces, energy estimates, Schauder and L^p-theory both with and without potential theory, including the Calderon-Zygmund theorem, Harnack's and De Giorgi-Moser-Nash theorems in the scalar case and partial regularity theorems in the vector valued case; energy minimizing harmonic maps and minimal graphs in codimension 1 and greater than 1. In this second deeply revised edition we also included the regularity of 2-dimensional weakly harmonic maps, the partial regularity of stationary harmonic maps, and their connections with the case p=1 of the L^p theory, including the celebrated results of Wente and of Coifman-Lions-Meyer-Semmes.
Book Synopsis Second Order Elliptic Equations and Elliptic Systems by : Ya-Zhe Chen
Download or read book Second Order Elliptic Equations and Elliptic Systems written by Ya-Zhe Chen and published by American Mathematical Soc.. This book was released on 1998 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are two parts to the book. In the first part, a complete introduction of various kinds of a priori estimate methods for the Dirichlet problem of second order elliptic partial differential equations is presented. In the second part, the existence and regularity theories of the Dirichlet problem for linear and nonlinear second order elliptic partial differential systems are introduced. The book features appropriate materials and is an excellent textbook for graduate students. The volume is also useful as a reference source for undergraduate mathematics majors, graduate students, professors, and scientists.
Book Synopsis Geometric Analysis and Nonlinear Partial Differential Equations by : Stefan Hildebrandt
Download or read book Geometric Analysis and Nonlinear Partial Differential Equations written by Stefan Hildebrandt and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is not a textbook, but rather a coherent collection of papers from the field of partial differential equations. Nevertheless we believe that it may very well serve as a good introduction into some topics of this classical field of analysis which, despite of its long history, is highly modem and well prospering. Richard Courant wrote in 1950: "It has always been a temptationfor mathematicians to present the crystallized product of their thought as a deductive general theory and to relegate the individual mathematical phenomenon into the role of an example. The reader who submits to the dogmatic form will be easily indoctrinated. Enlightenment, however, must come from an understanding of motives; live mathematical development springs from specific natural problems which can be easily understood, but whose solutions are difficult and demand new methods or more general significance. " We think that many, if not all, papers of this book are written in this spirit and will give the reader access to an important branch of analysis by exhibiting interest ing problems worth to be studied. Most of the collected articles have an extensive introductory part describing the history of the presented problems as well as the state of the art and offer a well chosen guide to the literature. This way the papers became lengthier than customary these days, but the level of presentation is such that an advanced graduate student should find the various articles both readable and stimulating.
Book Synopsis World Congress of Nonlinear Analysts '92 by : V. Lakshmikantham
Download or read book World Congress of Nonlinear Analysts '92 written by V. Lakshmikantham and published by Walter de Gruyter. This book was released on 2011-11-14 with total page 4040 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Nonlinear Evolution Equations by : Nina Nikolaevna Uraltseva
Download or read book Nonlinear Evolution Equations written by Nina Nikolaevna Uraltseva and published by American Mathematical Soc.. This book was released on 1995-05-19 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection focuses on nonlinear problems in partial differential equations. Most of the papers are based on lectures presented at the seminar on partial differential equations and mathematical physics at St. Petersburg University. Among the topics explored are the existence and properties of solutions of various classes of nonlinear evolution equations, nonlinear imbedding theorems, bifurcations of solutions, and equations of mathematical physics (Navier-Stokes type equations and the nonlinear Schrodinger equation). The book will be useful to researchers and graduate students working in partial differential equations and mathematical physics.
Book Synopsis Nonlinear Problems in Mathematical Physics and Related Topics I by : Michael Sh. Birman
Download or read book Nonlinear Problems in Mathematical Physics and Related Topics I written by Michael Sh. Birman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: The new series, International Mathematical Series founded by Kluwer / Plenum Publishers and the Russian publisher, Tamara Rozhkovskaya is published simultaneously in English and in Russian and starts with two volumes dedicated to the famous Russian mathematician Professor Olga Aleksandrovna Ladyzhenskaya, on the occasion of her 80th birthday. O.A. Ladyzhenskaya graduated from the Moscow State University. But throughout her career she has been closely connected with St. Petersburg where she works at the V.A. Steklov Mathematical Institute of the Russian Academy of Sciences. Many generations of mathematicians have become familiar with the nonlinear theory of partial differential equations reading the books on quasilinear elliptic and parabolic equations written by O.A. Ladyzhenskaya with V.A. Solonnikov and N.N. Uraltseva. Her results and methods on the Navier-Stokes equations, and other mathematical problems in the theory of viscous fluids, nonlinear partial differential equations and systems, the regularity theory, some directions of computational analysis are well known. So it is no surprise that these two volumes attracted leading specialists in partial differential equations and mathematical physics from more than 15 countries, who present their new results in the various fields of mathematics in which the results, methods, and ideas of O.A. Ladyzhenskaya played a fundamental role. Nonlinear Problems in Mathematical Physics and Related Topics I presents new results from distinguished specialists in the theory of partial differential equations and analysis. A large part of the material is devoted to the Navier-Stokes equations, which play an important role in the theory of viscous fluids. In particular, the existence of a local strong solution (in the sense of Ladyzhenskaya) to the problem describing some special motion in a Navier-Stokes fluid is established. Ladyzhenskaya's results on axially symmetric solutions to the Navier-Stokes fluid are generalized and solutions with fast decay of nonstationary Navier-Stokes equations in the half-space are stated. Application of the Fourier-analysis to the study of the Stokes wave problem and some interesting properties of the Stokes problem are presented. The nonstationary Stokes problem is also investigated in nonconvex domains and some Lp-estimates for the first-order derivatives of solutions are obtained. New results in the theory of fully nonlinear equations are presented. Some asymptotics are derived for elliptic operators with strongly degenerated symbols. New results are also presented for variational problems connected with phase transitions of means in controllable dynamical systems, nonlocal problems for quasilinear parabolic equations, elliptic variational problems with nonstandard growth, and some sufficient conditions for the regularity of lateral boundary. Additionally, new results are presented on area formulas, estimates for eigenvalues in the case of the weighted Laplacian on Metric graph, application of the direct Lyapunov method in continuum mechanics, singular perturbation property of capillary surfaces, partially free boundary problem for parametric double integrals.
Book Synopsis Metastability and Incompletely Posed Problems by : Stuart S. Antman
Download or read book Metastability and Incompletely Posed Problems written by Stuart S. Antman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IMA Volume in Mathematics and its Applications Metastability and Incompletely Posed Problems represents the proceedings of a workshop which was an integral part of the 19R4-R5 IMA program on CONTINUUM PHYSICS AND PARTIAL DIFFERENTIAL EOIIATIONS. We are grateful to the Scientific Committee: ,I.L. Eri cksen D. Kinderlehrer H. Rrezis C. Dafermos for their dedication and hard work in developing an imaginative, stimulating, and productive year-long program. George R. Sell Hans Weinberger Preface Most equilibrium events in nature do not realize configurations of minimum energy. They are only metastable. Available knowledge of constitutive relations and environmental interactions may be limiterl. As a result, many configurations may he compatible with the rlata. Such questions are incompletely poserl. The papers in this volume address a wide variety of these issues as they are perceived by the material scientist and the mathematician. They represent a portion of the significant activity which has been underway in recent years, from the experimental arena and physical theory to the analysis of differential equations and computation.
Book Synopsis Bridging Mathematics, Statistics, Engineering and Technology by : Bourama Toni
Download or read book Bridging Mathematics, Statistics, Engineering and Technology written by Bourama Toni and published by Springer Science & Business Media. This book was released on 2012-09-05 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the invited contributions from talks delivered in the Fall 2011 series of the Seminar on Mathematical Sciences and Applications 2011 at Virginia State University. Contributors to this volume, who are leading researchers in their fields, present their work in a way to generate genuine interdisciplinary interaction. Thus all articles therein are selective, self-contained, and are pedagogically exposed and help to foster student interest in science, technology, engineering and mathematics and to stimulate graduate and undergraduate research and collaboration between researchers in different areas. This work is suitable for both students and researchers in a variety of interdisciplinary fields namely, mathematics as it applies to engineering, physical-chemistry, nanotechnology, life sciences, computer science, finance, economics, and game theory.
Book Synopsis Parabolic Systems with Polynomial Growth and Regularity by : Frank Duzaar
Download or read book Parabolic Systems with Polynomial Growth and Regularity written by Frank Duzaar and published by American Mathematical Soc.. This book was released on 2011 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors establish a series of optimal regularity results for solutions to general non-linear parabolic systems $ u_t- \mathrm{div} \ a(x,t,u,Du)+H=0,$ under the main assumption of polynomial growth at rate $p$ i.e. $ a(x,t,u,Du) \leq L(1+ Du ^{p-1}), p \geq 2.$ They give a unified treatment of various interconnected aspects of the regularity theory: optimal partial regularity results for the spatial gradient of solutions, the first estimates on the (parabolic) Hausdorff dimension of the related singular set, and the first Calderon-Zygmund estimates for non-homogeneous problems are achieved here.
Book Synopsis Nonlinear Partial Differential Equations and Related Topics by : Arina A. Arkhipova
Download or read book Nonlinear Partial Differential Equations and Related Topics written by Arina A. Arkhipova and published by American Mathematical Soc.. This book was released on 2010 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: "St. Petersburg PDE seminar, special session dedicated to N.N. Uraltseva's [75th] anniversary, June 2009"--P. [vi].
Book Synopsis Proceedings of Symposia in Pure Mathematics by :
Download or read book Proceedings of Symposia in Pure Mathematics written by and published by . This book was released on 1986 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Introduction to Regularity Theory for Nonlinear Elliptic Systems by : Mariano Giaquinta
Download or read book Introduction to Regularity Theory for Nonlinear Elliptic Systems written by Mariano Giaquinta and published by Birkhauser. This book was released on 1993 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (PMS-48) by : Kari Astala
Download or read book Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (PMS-48) written by Kari Astala and published by Princeton University Press. This book was released on 2009-01-18 with total page 708 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the most recent developments in the theory of planar quasiconformal mappings with a particular focus on the interactions with partial differential equations and nonlinear analysis. It gives a thorough and modern approach to the classical theory and presents important and compelling applications across a spectrum of mathematics: dynamical systems, singular integral operators, inverse problems, the geometry of mappings, and the calculus of variations. It also gives an account of recent advances in harmonic analysis and their applications in the geometric theory of mappings. The book explains that the existence, regularity, and singular set structures for second-order divergence-type equations--the most important class of PDEs in applications--are determined by the mathematics underpinning the geometry, structure, and dimension of fractal sets; moduli spaces of Riemann surfaces; and conformal dynamical systems. These topics are inextricably linked by the theory of quasiconformal mappings. Further, the interplay between them allows the authors to extend classical results to more general settings for wider applicability, providing new and often optimal answers to questions of existence, regularity, and geometric properties of solutions to nonlinear systems in both elliptic and degenerate elliptic settings.