Multilinear Algebra

Download Multilinear Algebra PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461394252
Total Pages : 303 pages
Book Rating : 4.4/5 (613 download)

DOWNLOAD NOW!


Book Synopsis Multilinear Algebra by : Werner Greub

Download or read book Multilinear Algebra written by Werner Greub and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a revised version of the first edition and is intended as a Linear Algebra sequel and companion volume to the fourth edition of (Graduate Texts in Mathematics 23). As before, the terminology and basic results of Linear Algebra are frequently used without refer~nce. In particular, the reader should be familiar with Chapters 1-5 and the first part of Chapter 6 of that book, although other sections are occasionally used. In this new version of Multilinear Algebra, Chapters 1-5 remain essen tially unchanged from the previous edition. Chapter 6 has been completely rewritten and split into three (Chapters 6, 7, and 8). Some of the proofs have been simplified and a substantial amount of new material has been added. This applies particularly to the study of characteristic coefficients and the Pfaffian. The old Chapter 7 remains as it stood, except that it is now Chapter 9. The old Chapter 8 has been suppressed and the material which it con tained (multilinear functions) has been relocated at the end of Chapters 3, 5, and 9. The last two chapters on Clifford algebras and their representations are completely new. In view of the growing importance of Clifford algebras and the relatively few references available, it was felt that these chapters would be useful to both mathematicians and physicists.

Multilinear Algebra

Download Multilinear Algebra PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9789056990787
Total Pages : 344 pages
Book Rating : 4.9/5 (97 download)

DOWNLOAD NOW!


Book Synopsis Multilinear Algebra by : Russell Merris

Download or read book Multilinear Algebra written by Russell Merris and published by CRC Press. This book was released on 1997-08-20 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: The prototypical multilinear operation is multiplication. Indeed, every multilinear mapping can be factored through a tensor product. Apart from its intrinsic interest, the tensor product is of fundamental importance in a variety of disciplines, ranging from matrix inequalities and group representation theory, to the combinatorics of symmetric functions, and all these subjects appear in this book. Another attraction of multilinear algebra lies in its power to unify such seemingly diverse topics. This is done in the final chapter by means of the rational representations of the full linear group. Arising as characters of these representations, the classical Schur polynomials are one of the keys to unification. Prerequisites for the book are minimized by self-contained introductions in the early chapters. Throughout the text, some of the easier proofs are left to the exercises, and some of the more difficult ones to the references.

Multilinear Algebra

Download Multilinear Algebra PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498714900
Total Pages : 341 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Multilinear Algebra by : Russell Merris

Download or read book Multilinear Algebra written by Russell Merris and published by CRC Press. This book was released on 1997-08-20 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: The prototypical multilinear operation is multiplication. Indeed, every multilinear mapping can be factored through a tensor product. Apart from its intrinsic interest, the tensor product is of fundamental importance in a variety of disciplines, ranging from matrix inequalities and group representation theory, to the combinatorics of symmetric func

Elements Of Linear And Multilinear Algebra

Download Elements Of Linear And Multilinear Algebra PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9811222746
Total Pages : 234 pages
Book Rating : 4.8/5 (112 download)

DOWNLOAD NOW!


Book Synopsis Elements Of Linear And Multilinear Algebra by : John M Erdman

Download or read book Elements Of Linear And Multilinear Algebra written by John M Erdman and published by World Scientific. This book was released on 2020-12-22 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: This set of notes is an activity-oriented introduction to linear and multilinear algebra. The great majority of the most elementary results in these subjects are straightforward and can be verified by the thoughtful student. Indeed, that is the main point of these notes — to convince the beginner that the subject is accessible. In the material that follows there are numerous indicators that suggest activity on the part of the reader: words such as 'proposition', 'example', 'theorem', 'exercise', and 'corollary', if not followed by a proof (and proofs here are very rare) or a reference to a proof, are invitations to verify the assertions made.These notes are intended to accompany an (academic) year-long course at the advanced undergraduate or beginning graduate level. (With judicious pruning most of the material can be covered in a two-term sequence.) The text is also suitable for a lecture-style class, the instructor proving some of the results while leaving others as exercises for the students.This book has tried to keep the facts about vector spaces and those about inner product spaces separate. Many beginning linear algebra texts conflate the material on these two vastly different subjects.

Tensors: Geometry and Applications

Download Tensors: Geometry and Applications PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821869078
Total Pages : 464 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Tensors: Geometry and Applications by : J. M. Landsberg

Download or read book Tensors: Geometry and Applications written by J. M. Landsberg and published by American Mathematical Soc.. This book was released on 2011-12-14 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensors are ubiquitous in the sciences. The geometry of tensors is both a powerful tool for extracting information from data sets, and a beautiful subject in its own right. This book has three intended uses: a classroom textbook, a reference work for researchers in the sciences, and an account of classical and modern results in (aspects of) the theory that will be of interest to researchers in geometry. For classroom use, there is a modern introduction to multilinear algebra and to the geometry and representation theory needed to study tensors, including a large number of exercises. For researchers in the sciences, there is information on tensors in table format for easy reference and a summary of the state of the art in elementary language. This is the first book containing many classical results regarding tensors. Particular applications treated in the book include the complexity of matrix multiplication, P versus NP, signal processing, phylogenetics, and algebraic statistics. For geometers, there is material on secant varieties, G-varieties, spaces with finitely many orbits and how these objects arise in applications, discussions of numerous open questions in geometry arising in applications, and expositions of advanced topics such as the proof of the Alexander-Hirschowitz theorem and of the Weyman-Kempf method for computing syzygies.

Tensor Analysis on Manifolds

Download Tensor Analysis on Manifolds PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486139239
Total Pages : 290 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Tensor Analysis on Manifolds by : Richard L. Bishop

Download or read book Tensor Analysis on Manifolds written by Richard L. Bishop and published by Courier Corporation. This book was released on 2012-04-26 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: DIVProceeds from general to special, including chapters on vector analysis on manifolds and integration theory. /div

Manifolds, Tensors and Forms

Download Manifolds, Tensors and Forms PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107042194
Total Pages : 343 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Manifolds, Tensors and Forms by : Paul Renteln

Download or read book Manifolds, Tensors and Forms written by Paul Renteln and published by Cambridge University Press. This book was released on 2014 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive treatment of the essentials of modern differential geometry and topology for graduate students in mathematics and the physical sciences.

Multilinear Algebra

Download Multilinear Algebra PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521090605
Total Pages : 0 pages
Book Rating : 4.0/5 (96 download)

DOWNLOAD NOW!


Book Synopsis Multilinear Algebra by : D. G. Northcott

Download or read book Multilinear Algebra written by D. G. Northcott and published by Cambridge University Press. This book was released on 2009-01-18 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multilinear algebra has important applications in many different areas of mathematics but is usually learned in a rather haphazard fashion. The aim of this book is to provide a readable and systematic account of multilinear algebra at a level suitable for graduate students. Professor Northcott gives a thorough treatment of topics such as tensor, exterior, Grassmann, Hopf and co-algebras and ends each chapter with a section entitled 'Comments and Exercises'. The comments contain convenient summaries and discussion of the content whilst the exercises provide an opportunity to test understanding and add extra material. Complete solutions are provided for those exercises that are particularly important or used later in the book. The volume as a whole is based on advanced lectures given by the author at the University of Sheffield.

Algebra: Chapter 0

Download Algebra: Chapter 0 PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 147046571X
Total Pages : 713 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Algebra: Chapter 0 by : Paolo Aluffi

Download or read book Algebra: Chapter 0 written by Paolo Aluffi and published by American Mathematical Soc.. This book was released on 2021-11-09 with total page 713 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.

Introduction to Vectors and Tensors

Download Introduction to Vectors and Tensors PDF Online Free

Author :
Publisher : Springer
ISBN 13 :
Total Pages : 224 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Vectors and Tensors by : Ray M. Bowen

Download or read book Introduction to Vectors and Tensors written by Ray M. Bowen and published by Springer. This book was released on 1976-05-31 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: To Volume 1 This work represents our effort to present the basic concepts of vector and tensor analysis. Volume 1 begins with a brief discussion of algebraic structures followed by a rather detailed discussion of the algebra of vectors and tensors. Volume 2 begins with a discussion of Euclidean manifolds, which leads to a development of the analytical and geometrical aspects of vector and tensor fields. We have not included a discussion of general differentiable manifolds. However, we have included a chapter on vector and tensor fields defined on hypersurfaces in a Euclidean manifold. In preparing this two-volume work, our intention was to present to engineering and science students a modern introduction to vectors and tensors. Traditional courses on applied mathematics have emphasized problem-solving techniques rather than the systematic development of concepts. As a result, it is possible for such courses to become terminal mathematics courses rather than courses which equip the student to develop his or her understanding further.

Linear Algebra Done Right

Download Linear Algebra Done Right PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780387982595
Total Pages : 276 pages
Book Rating : 4.9/5 (825 download)

DOWNLOAD NOW!


Book Synopsis Linear Algebra Done Right by : Sheldon Axler

Download or read book Linear Algebra Done Right written by Sheldon Axler and published by Springer Science & Business Media. This book was released on 1997-07-18 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.

Analysis and Algebra on Differentiable Manifolds: A Workbook for Students and Teachers

Download Analysis and Algebra on Differentiable Manifolds: A Workbook for Students and Teachers PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9048135648
Total Pages : 446 pages
Book Rating : 4.0/5 (481 download)

DOWNLOAD NOW!


Book Synopsis Analysis and Algebra on Differentiable Manifolds: A Workbook for Students and Teachers by : P.M. Gadea

Download or read book Analysis and Algebra on Differentiable Manifolds: A Workbook for Students and Teachers written by P.M. Gadea and published by Springer Science & Business Media. This book was released on 2009-12-12 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: A famous Swiss professor gave a student’s course in Basel on Riemann surfaces. After a couple of lectures, a student asked him, “Professor, you have as yet not given an exact de nition of a Riemann surface.” The professor answered, “With Riemann surfaces, the main thing is to UNDERSTAND them, not to de ne them.” The student’s objection was reasonable. From a formal viewpoint, it is of course necessary to start as soon as possible with strict de nitions, but the professor’s - swer also has a substantial background. The pure de nition of a Riemann surface— as a complex 1-dimensional complex analytic manifold—contributes little to a true understanding. It takes a long time to really be familiar with what a Riemann s- face is. This example is typical for the objects of global analysis—manifolds with str- tures. There are complex concrete de nitions but these do not automatically explain what they really are, what we can do with them, which operations they really admit, how rigid they are. Hence, there arises the natural question—how to attain a deeper understanding? One well-known way to gain an understanding is through underpinning the d- nitions, theorems and constructions with hierarchies of examples, counterexamples and exercises. Their choice, construction and logical order is for any teacher in global analysis an interesting, important and fun creating task.

An Introduction to Tensors and Group Theory for Physicists

Download An Introduction to Tensors and Group Theory for Physicists PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3319147943
Total Pages : 317 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Tensors and Group Theory for Physicists by : Nadir Jeevanjee

Download or read book An Introduction to Tensors and Group Theory for Physicists written by Nadir Jeevanjee and published by Birkhäuser. This book was released on 2015-03-11 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of this highly praised textbook provides an introduction to tensors, group theory, and their applications in classical and quantum physics. Both intuitive and rigorous, it aims to demystify tensors by giving the slightly more abstract but conceptually much clearer definition found in the math literature, and then connects this formulation to the component formalism of physics calculations. New pedagogical features, such as new illustrations, tables, and boxed sections, as well as additional “invitation” sections that provide accessible introductions to new material, offer increased visual engagement, clarity, and motivation for students. Part I begins with linear algebraic foundations, follows with the modern component-free definition of tensors, and concludes with applications to physics through the use of tensor products. Part II introduces group theory, including abstract groups and Lie groups and their associated Lie algebras, then intertwines this material with that of Part I by introducing representation theory. Examples and exercises are provided in each chapter for good practice in applying the presented material and techniques. Prerequisites for this text include the standard lower-division mathematics and physics courses, though extensive references are provided for the motivated student who has not yet had these. Advanced undergraduate and beginning graduate students in physics and applied mathematics will find this textbook to be a clear, concise, and engaging introduction to tensors and groups. Reviews of the First Edition “[P]hysicist Nadir Jeevanjee has produced a masterly book that will help other physicists understand those subjects [tensors and groups] as mathematicians understand them... From the first pages, Jeevanjee shows amazing skill in finding fresh, compelling words to bring forward the insight that animates the modern mathematical view...[W]ith compelling force and clarity, he provides many carefully worked-out examples and well-chosen specific problems... Jeevanjee’s clear and forceful writing presents familiar cases with a freshness that will draw in and reassure even a fearful student. [This] is a masterpiece of exposition and explanation that would win credit for even a seasoned author.” —Physics Today "Jeevanjee’s [text] is a valuable piece of work on several counts, including its express pedagogical service rendered to fledgling physicists and the fact that it does indeed give pure mathematicians a way to come to terms with what physicists are saying with the same words we use, but with an ostensibly different meaning. The book is very easy to read, very user-friendly, full of examples...and exercises, and will do the job the author wants it to do with style.” —MAA Reviews

Linear Algebra and Geometry

Download Linear Algebra and Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642309941
Total Pages : 536 pages
Book Rating : 4.6/5 (423 download)

DOWNLOAD NOW!


Book Synopsis Linear Algebra and Geometry by : Igor R. Shafarevich

Download or read book Linear Algebra and Geometry written by Igor R. Shafarevich and published by Springer Science & Business Media. This book was released on 2012-08-23 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book on linear algebra and geometry is based on a course given by renowned academician I.R. Shafarevich at Moscow State University. The book begins with the theory of linear algebraic equations and the basic elements of matrix theory and continues with vector spaces, linear transformations, inner product spaces, and the theory of affine and projective spaces. The book also includes some subjects that are naturally related to linear algebra but are usually not covered in such courses: exterior algebras, non-Euclidean geometry, topological properties of projective spaces, theory of quadrics (in affine and projective spaces), decomposition of finite abelian groups, and finitely generated periodic modules (similar to Jordan normal forms of linear operators). Mathematical reasoning, theorems, and concepts are illustrated with numerous examples from various fields of mathematics, including differential equations and differential geometry, as well as from mechanics and physics.

Advanced Calculus (Revised Edition)

Download Advanced Calculus (Revised Edition) PDF Online Free

Author :
Publisher : World Scientific Publishing Company
ISBN 13 : 9814583952
Total Pages : 595 pages
Book Rating : 4.8/5 (145 download)

DOWNLOAD NOW!


Book Synopsis Advanced Calculus (Revised Edition) by : Lynn Harold Loomis

Download or read book Advanced Calculus (Revised Edition) written by Lynn Harold Loomis and published by World Scientific Publishing Company. This book was released on 2014-02-26 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.

Advanced Linear Algebra

Download Advanced Linear Algebra PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 038727474X
Total Pages : 488 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Advanced Linear Algebra by : Steven Roman

Download or read book Advanced Linear Algebra written by Steven Roman and published by Springer Science & Business Media. This book was released on 2007-12-31 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covers a notably broad range of topics, including some topics not generally found in linear algebra books Contains a discussion of the basics of linear algebra

Matrix Theory

Download Matrix Theory PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1584886250
Total Pages : 570 pages
Book Rating : 4.5/5 (848 download)

DOWNLOAD NOW!


Book Synopsis Matrix Theory by : Robert Piziak

Download or read book Matrix Theory written by Robert Piziak and published by CRC Press. This book was released on 2007-02-22 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1990, the National Science Foundation recommended that every college mathematics curriculum should include a second course in linear algebra. In answer to this recommendation, Matrix Theory: From Generalized Inverses to Jordan Form provides the material for a second semester of linear algebra that probes introductory linear algebra concepts while also exploring topics not typically covered in a sophomore-level class. Tailoring the material to advanced undergraduate and beginning graduate students, the authors offer instructors flexibility in choosing topics from the book. The text first focuses on the central problem of linear algebra: solving systems of linear equations. It then discusses LU factorization, derives Sylvester's rank formula, introduces full-rank factorization, and describes generalized inverses. After discussions on norms, QR factorization, and orthogonality, the authors prove the important spectral theorem. They also highlight the primary decomposition theorem, Schur's triangularization theorem, singular value decomposition, and the Jordan canonical form theorem. The book concludes with a chapter on multilinear algebra. With this classroom-tested text students can delve into elementary linear algebra ideas at a deeper level and prepare for further study in matrix theory and abstract algebra.