Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Moving Grid Methods For Time Dependent Partial Differential Equations
Download Moving Grid Methods For Time Dependent Partial Differential Equations full books in PDF, epub, and Kindle. Read online Moving Grid Methods For Time Dependent Partial Differential Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Moving-grid Methods for Time-dependent Partial Differential Equations by : P. A. Zegeling
Download or read book Moving-grid Methods for Time-dependent Partial Differential Equations written by P. A. Zegeling and published by . This book was released on 1993 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Finite Difference Methods for Ordinary and Partial Differential Equations by : Randall J. LeVeque
Download or read book Finite Difference Methods for Ordinary and Partial Differential Equations written by Randall J. LeVeque and published by SIAM. This book was released on 2007-01-01 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Book Synopsis Adaptive Moving Mesh Methods by : Weizhang Huang
Download or read book Adaptive Moving Mesh Methods written by Weizhang Huang and published by Springer Science & Business Media. This book was released on 2010-10-26 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about adaptive mesh generation and moving mesh methods for the numerical solution of time-dependent partial differential equations. It presents a general framework and theory for adaptive mesh generation and gives a comprehensive treatment of moving mesh methods and their basic components, along with their application for a number of nontrivial physical problems. Many explicit examples with computed figures illustrate the various methods and the effects of parameter choices for those methods. Graduate students, researchers and practitioners working in this area will benefit from this book.
Book Synopsis Handbook of Grid Generation by : Joe F. Thompson
Download or read book Handbook of Grid Generation written by Joe F. Thompson and published by CRC Press. This book was released on 1998-12-29 with total page 1136 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Grid Generation addresses the use of grids (meshes) in the numerical solutions of partial differential equations by finite elements, finite volume, finite differences, and boundary elements. Four parts divide the chapters: structured grids, unstructured girds, surface definition, and adaption/quality. An introduction to each section provides a roadmap through the material. This handbook covers: Fundamental concepts and approaches Grid generation process Essential mathematical elements from tensor analysis and differential geometry, particularly relevant to curves and surfaces Cells of any shape - Cartesian, structured curvilinear coordinates, unstructured tetrahedra, unstructured hexahedra, or various combinations Separate grids overlaid on one another, communicating data through interpolation Moving boundaries and internal interfaces in the field Resolving gradients and controlling solution error Grid generation codes, both commercial and freeware, as well as representative and illustrative grid configurations Handbook of Grid Generation contains 37 chapters as well as contributions from more than 100 experts from around the world, comprehensively evaluating this expanding field and providing a fundamental orientation for practitioners.
Book Synopsis Grid Generation Methods by : Vladimir D. Liseikin
Download or read book Grid Generation Methods written by Vladimir D. Liseikin and published by Springer. This book was released on 2017-06-12 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is an introduction to methods of grid generation technology in scientific computing. Special attention is given to methods developed by the author for the treatment of singularly-perturbed equations, e.g. in modeling high Reynolds number flows. Functionals of conformality, orthogonality, energy and alignment are discussed.
Book Synopsis Adaptive Methods for Partial Differential Equations by : Ivo Babushka
Download or read book Adaptive Methods for Partial Differential Equations written by Ivo Babushka and published by SIAM. This book was released on 1989-01-01 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Proceedings of the Workshop on Adaptive Computational Methods for Partial Differential Equations, Rensselaer Polytechnic Institute, October 13-15, 1988"--T.p. verso.
Book Synopsis Local Uniform Grid Refinement for Time-dependent Partial Differential Equations by : R. A. Trompert
Download or read book Local Uniform Grid Refinement for Time-dependent Partial Differential Equations written by R. A. Trompert and published by . This book was released on 1995 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Multigrid Methods written by W. Hackbusch and published by Springer. This book was released on 2006-11-15 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Partial Differential Equations by : Walter A. Strauss
Download or read book Partial Differential Equations written by Walter A. Strauss and published by John Wiley & Sons. This book was released on 2007-12-21 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Book Synopsis Moving Finite Element Method by : Maria do Carmo Coimbra
Download or read book Moving Finite Element Method written by Maria do Carmo Coimbra and published by CRC Press. This book was released on 2016-11-30 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on process simulation in chemical engineering with a numerical algorithm based on the moving finite element method (MFEM). It offers new tools and approaches for modeling and simulating time-dependent problems with moving fronts and with moving boundaries described by time-dependent convection-reaction-diffusion partial differential equations in one or two-dimensional space domains. It provides a comprehensive account of the development of the moving finite element method, describing and analyzing the theoretical and practical aspects of the MFEM for models in 1D, 1D+1d, and 2D space domains. Mathematical models are universal, and the book reviews successful applications of MFEM to solve engineering problems. It covers a broad range of application algorithm to engineering problems, namely on separation and reaction processes presenting and discussing relevant numerical applications of the moving finite element method derived from real-world process simulations.
Book Synopsis Scientific Computing and Applications by : Peter Minev
Download or read book Scientific Computing and Applications written by Peter Minev and published by Nova Publishers. This book was released on 2001 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scientific Computing & Applications
Book Synopsis Acta Numerica 2009 by : Arieh Iserles
Download or read book Acta Numerica 2009 written by Arieh Iserles and published by Cambridge University Press. This book was released on 2009-05-28 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: A high-impact, prestigious, annual publication featuring invited surveys by subject leaders: essential reading for all practitioners and researchers.
Book Synopsis Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations by : Willem Hundsdorfer
Download or read book Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations written by Willem Hundsdorfer and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unique book on Reaction-Advection-Diffusion problems
Book Synopsis A Computational Differential Geometry Approach to Grid Generation by : Vladimir D. Liseikin
Download or read book A Computational Differential Geometry Approach to Grid Generation written by Vladimir D. Liseikin and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: The process of breaking up a physical domain into smaller sub-domains, known as meshing, facilitates the numerical solution of partial differential equations used to simulate physical systems. In an updated and expanded Second Edition, this monograph gives a detailed treatment based on the numerical solution of inverted Beltramian and diffusion equations with respect to monitor metrics for generating both structured and unstructured grids in domains and on surfaces.
Book Synopsis Scientific and Technical Aerospace Reports by :
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1994 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Numerical Time-Dependent Partial Differential Equations for Scientists and Engineers by : Moysey Brio
Download or read book Numerical Time-Dependent Partial Differential Equations for Scientists and Engineers written by Moysey Brio and published by Academic Press. This book was released on 2010-09-21 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is the first text that in addition to standard convergence theory treats other necessary ingredients for successful numerical simulations of physical systems encountered by every practitioner. The book is aimed at users with interests ranging from application modeling to numerical analysis and scientific software development. It is strongly influenced by the authors research in in space physics, electrical and optical engineering, applied mathematics, numerical analysis and professional software development. The material is based on a year-long graduate course taught at the University of Arizona since 1989. The book covers the first two-semesters of a three semester series. The second semester is based on a semester-long project, while the third semester requirement consists of a particular methods course in specific disciplines like computational fluid dynamics, finite element method in mechanical engineering, computational physics, biology, chemistry, photonics, etc.The first three chapters focus on basic properties of partial differential equations, including analysis of the dispersion relation, symmetries, particular solutions and instabilities of the PDEs; methods of discretization and convergence theory for initial value problems. The goal is to progress from observations of simple numerical artifacts like diffusion, damping, dispersion, and anisotropies to their analysis and management technique, as it is not always possible to completely eliminate them.In the second part of the book we cover topics for which there are only sporadic theoretical results, while they are an integral part and often the most important part for successful numerical simulation. We adopt a more heuristic and practical approach using numerical methods of investigation and validation. The aim is teach students subtle key issues in order to separate physics from numerics. The following topics are addressed: Implementation of transparent and absorbing boundary conditions; Practical stability analysis in the presence of the boundaries and interfaces; Treatment of problems with different temporal/spatial scales either explicit or implicit; preservation of symmetries and additional constraints; physical regularization of singularities; resolution enhancement using adaptive mesh refinement and moving meshes. - Self contained presentation of key issues in successful numerical simulation - Accessible to scientists and engineers with diverse background - Provides analysis of the dispersion relation, symmetries, particular solutions and instabilities of the partial differential equations
Book Synopsis Scientific Computing in Chemical Engineering by : Frerich Keil
Download or read book Scientific Computing in Chemical Engineering written by Frerich Keil and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scientific Computing in Chemical Engineering gives the state of the art from the point of view of the numerical mathematicians as well as from the engineers. The application of modern methods in numerical mathematics on problems in chemical engineering, especially reactor modeling, process simulation, process optimization and the use of parallel computing is detailed.