Molecular-Scale Electronics

Download Molecular-Scale Electronics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030033058
Total Pages : 262 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Molecular-Scale Electronics by : Xuefeng Guo

Download or read book Molecular-Scale Electronics written by Xuefeng Guo and published by Springer. This book was released on 2018-12-06 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.

Molecular-Scale Electronics

Download Molecular-Scale Electronics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 3527345485
Total Pages : 408 pages
Book Rating : 4.5/5 (273 download)

DOWNLOAD NOW!


Book Synopsis Molecular-Scale Electronics by : Xuefeng Guo

Download or read book Molecular-Scale Electronics written by Xuefeng Guo and published by John Wiley & Sons. This book was released on 2020-08-31 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides in-depth knowledge on molecular electronics and emphasizes the techniques for designing molecular junctions with controlled functionalities This comprehensive book covers the major advances with the most general applicability in the field of molecular electronic devices. It emphasizes new insights into the development of efficient platform methodologies for building such reliable devices with desired functionalities through the combination of programmed bottom-up self-assembly and sophisticated top-down device fabrication. It also helps to develop an understanding of the device fabrication processes and the characteristics of the resulting electrode-molecule interface. Beginning with an introduction to the subject, Molecular-Scale Electronics: Concept, Fabrication and Applications offers full chapter coverage on topics such as: Metal Electrodes for Molecular Electronics; Carbon Electrodes for Molecular Electronics; Other Electrodes for Molecular Electronics; Novel Phenomena in Single-Molecule Junctions; and Supramolecular Interactions in Single-Molecule Junctions. Other chapters discuss Theoretical Aspects for Electron Transport through Molecular Junctions; Characterization Techniques for Molecular Electronics; and Integrating Molecular Functionalities into Electrical Circuits. The book finishes with a summary of the primary challenges facing the field and offers an outlook at its future. * Summarizes a number of different approaches for forming molecular-scale junctions and discusses various experimental techniques for examining these nanoscale circuits in detail * Gives overview of characterization techniques and theoretical simulations for molecular electronics * Highlights the major contributions and new concepts of integrating molecular functionalities into electrical circuits * Provides a critical discussion of limitations and main challenges that still exist for the development of molecular electronics * Suited for readers studying or doing research in the broad fields of Nano/molecular electronics and other device-related fields Molecular-Scale Electronics is an excellent book for materials scientists, electrochemists, electronics engineers, physical chemists, polymer chemists, and solid-state chemists. It will also benefit physicists, semiconductor physicists, engineering scientists, and surface chemists.

Molecular Electronics

Download Molecular Electronics PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814282588
Total Pages : 724 pages
Book Rating : 4.8/5 (142 download)

DOWNLOAD NOW!


Book Synopsis Molecular Electronics by : Juan Carlos Cuevas

Download or read book Molecular Electronics written by Juan Carlos Cuevas and published by World Scientific. This book was released on 2010 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of the rapidly developing field of molecular electronics. It focuses on our present understanding of the electrical conduction in single-molecule circuits and provides a thorough introduction to the experimental techniques and theoretical concepts. It will also constitute as the first textbook-like introduction to both the experiment and theory of electronic transport through single atoms and molecules. In this sense, this publication will prove invaluable to both researchers and students interested in the field of nanoelectronics and nanoscience in general. Molecular Electronics is self-contained and unified in its presentation. It may be used as a textbook on nanoelectronics by graduate students and advanced undergraduates studying physics and chemistry. In addition, included are previously unpublished material that will help researchers gain a deeper understanding into the basic concepts involved in the field of molecular electronics.

Molecular-Scale Electronics

Download Molecular-Scale Electronics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 352781888X
Total Pages : 408 pages
Book Rating : 4.5/5 (278 download)

DOWNLOAD NOW!


Book Synopsis Molecular-Scale Electronics by : Xuefeng Guo

Download or read book Molecular-Scale Electronics written by Xuefeng Guo and published by John Wiley & Sons. This book was released on 2020-07-02 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides in-depth knowledge on molecular electronics and emphasizes the techniques for designing molecular junctions with controlled functionalities This comprehensive book covers the major advances with the most general applicability in the field of molecular electronic devices. It emphasizes new insights into the development of efficient platform methodologies for building such reliable devices with desired functionalities through the combination of programmed bottom-up self-assembly and sophisticated top-down device fabrication. It also helps to develop an understanding of the device fabrication processes and the characteristics of the resulting electrode-molecule interface. Beginning with an introduction to the subject, Molecular-Scale Electronics: Concept, Fabrication and Applications offers full chapter coverage on topics such as: Metal Electrodes for Molecular Electronics; Carbon Electrodes for Molecular Electronics; Other Electrodes for Molecular Electronics; Novel Phenomena in Single-Molecule Junctions; and Supramolecular Interactions in Single-Molecule Junctions. Other chapters discuss Theoretical Aspects for Electron Transport through Molecular Junctions; Characterization Techniques for Molecular Electronics; and Integrating Molecular Functionalities into Electrical Circuits. The book finishes with a summary of the primary challenges facing the field and offers an outlook at its future. * Summarizes a number of different approaches for forming molecular-scale junctions and discusses various experimental techniques for examining these nanoscale circuits in detail * Gives overview of characterization techniques and theoretical simulations for molecular electronics * Highlights the major contributions and new concepts of integrating molecular functionalities into electrical circuits * Provides a critical discussion of limitations and main challenges that still exist for the development of molecular electronics * Suited for readers studying or doing research in the broad fields of Nano/molecular electronics and other device-related fields Molecular-Scale Electronics is an excellent book for materials scientists, electrochemists, electronics engineers, physical chemists, polymer chemists, and solid-state chemists. It will also benefit physicists, semiconductor physicists, engineering scientists, and surface chemists.

Molecular Electronics

Download Molecular Electronics PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 392 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Molecular Electronics by : Ari Aviram

Download or read book Molecular Electronics written by Ari Aviram and published by . This book was released on 1998 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume explores the resurgence of interest in the field of molecular electronics in view of recent advances in such areas as molecular wires, molecular components, fabrication, and assemblies of molecular scale devices and their wiring on surfaces. It shows how molecular electronics offer scientists an opportunity to study and understand a new class of materials, on the molecular level and in isolation, while offering to engineers a new microelectronics technology.

Molecular Electronic Devices

Download Molecular Electronic Devices PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 408 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Molecular Electronic Devices by : Forrest L. Carter

Download or read book Molecular Electronic Devices written by Forrest L. Carter and published by . This book was released on 1982 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt:

P3HT Revisited – From Molecular Scale to Solar Cell Devices

Download P3HT Revisited – From Molecular Scale to Solar Cell Devices PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 366245145X
Total Pages : 232 pages
Book Rating : 4.6/5 (624 download)

DOWNLOAD NOW!


Book Synopsis P3HT Revisited – From Molecular Scale to Solar Cell Devices by : Sabine Ludwigs

Download or read book P3HT Revisited – From Molecular Scale to Solar Cell Devices written by Sabine Ludwigs and published by Springer. This book was released on 2014-11-13 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science. The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics. Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist. Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned. Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students

Printed Organic and Molecular Electronics

Download Printed Organic and Molecular Electronics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441990747
Total Pages : 712 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis Printed Organic and Molecular Electronics by : Daniel R. Gamota

Download or read book Printed Organic and Molecular Electronics written by Daniel R. Gamota and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 712 pages. Available in PDF, EPUB and Kindle. Book excerpt: Printed Organic And Molecular Electronics was compiled to create a reference that included existing knowledge from the most renowned industry, academic, and government experts in the fields of organic semiconductor technology, graphic arts printing, micro-contact printing, and molecular electronics. It is divided into sections that consist of the most critical topics required for one to develop a strong understanding of the states of these technologies and the paths for taking them from R&D to the hands of consumers on a massive scale. As such, the book provides both theory as well as technology development results and trends.

Molecular Nanoelectronics

Download Molecular Nanoelectronics PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 424 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Molecular Nanoelectronics by : Mark A. Reed

Download or read book Molecular Nanoelectronics written by Mark A. Reed and published by . This book was released on 2003 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: And Perspective 225 -- Acknowledgments 225 -- R eferences 225 -- Chapter 9. NANOPARTICLES: BUILDING BLOCKS -- For Functional Nanostructures -- Corey Radloff, Cristin E. Moran, Joseph B. Jackson, Naomi J Halas -- 1. Introduction 229 -- 2. Building Blocks 230 -- 2.1. Nonmetallic Nanoparticles 230 -- 2.2. Semiconductor Nanocrystals 235 -- 2.3. M etal N anoparticles 241 -- 3. Assembly and Deposition Methods 244 -- 3.1. N anoshells 244 -- 3.2. Two- and Three-Dimensional Nanoparticle Assemblies 247 -- 3.3. Single-Particle Trapping and Manipulation 256 -- 4. A pplications 258 -- 4.1. Quantum Dot Corporation 258 -- 4.2. Nanospectra L.L.P 258 -- 4.3. SurroMed Incorporated 259 -- R eferences 259 -- Chapter 10. MOLECULAR- AND NANOCRYSTAL-BASED -- Photovoltaics -- Laura A. Swafford, Sandra J. Rosenthal -- 1. Introduction 263 -- 2. p-n Junction Silicon Solar Cells 264 -- 3. Photosynthesis: Nature's Solar Cell 266 -- 4. Molecular- and Nanomaterial-Based Photovoltaics 267 -- 4.1. Schottky Photodiodes 267 -- 4.2. Sandwich Heterojunction Photovoltaics 277 -- 4.3. Bulk Heterojunction Photovoltaics 279 -- 5. Future Photovoltaics 284 -- 6. Concluding Remarks 286 -- Appendix: Photovoltaic Efficiencies 286 -- A .1. Lighting Conditions 286 -- A.2. Calculating Photovoltaic Efficiencies 287 -- Acknowledgments 287 -- R eferences 287 -- Chapter 11. ORGANIC THIN FILM TRANSISTORS -- Hagen Klauk, Thomas N. Jackson -- 1. Introduction 291 -- 2. Pushing the Limits 296 -- 3. Device Architectures 297 -- 4. Flexible Substrate Technology 297 -- 5. Gate Dielectrics 299 -- 6. Low-Cost Proc.

Quantum Transport in Nanostructures and Molecules

Download Quantum Transport in Nanostructures and Molecules PDF Online Free

Author :
Publisher :
ISBN 13 : 9780750336390
Total Pages : 0 pages
Book Rating : 4.3/5 (363 download)

DOWNLOAD NOW!


Book Synopsis Quantum Transport in Nanostructures and Molecules by : Colin John Lambert

Download or read book Quantum Transport in Nanostructures and Molecules written by Colin John Lambert and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference text presents a conceptual framework for understanding room-temperature electron and phonon transport through molecules and other quantum objects. The flow of electricity through molecules is explained at the boundary of physics and chemistry, providing an authoritative introduction to molecular electronics for physicists, and quantum transport for chemists. Professor Lambert provides a pedagogical account of the fundamental concepts needed to understand quantum transport and thermoelectricity in molecular-scale and nanoscale structures. The material provides researchers and advanced students with an understanding of how quantum transport relates to other areas of materials modelling, condensed matter and computational chemistry. After reading the book, the reader will be familiar with the basic concepts of molecular-orbital theory and scattering theory, which underpin current theories of quantum transport.

Molecular Electronics

Download Molecular Electronics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470723882
Total Pages : 549 pages
Book Rating : 4.4/5 (77 download)

DOWNLOAD NOW!


Book Synopsis Molecular Electronics by : Michael C. Petty

Download or read book Molecular Electronics written by Michael C. Petty and published by John Wiley & Sons. This book was released on 2008-03-11 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: This consistent and comprehensive text is unique in providing an informed insight into molecular electronics by contrasting the prospects for molecular scale electronics with the continuing development of the inorganic semiconductor industry. Providing a wealth of information on the subject from background material to possible applications, Molecular Electronics contains all the need to know information in one easily accessible place. Speculation about future developments has also been included to give the whole picture of this increasingly popular and important topic.

An Introduction to Molecular Electronics

Download An Introduction to Molecular Electronics PDF Online Free

Author :
Publisher : Oxford University Press, USA
ISBN 13 :
Total Pages : 406 pages
Book Rating : 4.:/5 (318 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Molecular Electronics by : Michael C. Petty

Download or read book An Introduction to Molecular Electronics written by Michael C. Petty and published by Oxford University Press, USA. This book was released on 1995 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular electronics is concerned with making single crystals from a mass of transistors, diodes, and resisters. Present uses include liquid crystal displays and ferroelectric polymers in transducers, but the field is a growing one, with special topics courses on the subject being offered more and more widely all the time. This book provides an introduction to the subject that will be useful to advanced undergraduate and graduate students in a variety of disciplines, including materials science, physics, bioelectronics, electronic engineering, and biochemistry. Each chapter covers the fundamental principles of the topic, lists the key-references, and considers future developments.

Molecular Electronics

Download Molecular Electronics PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814282596
Total Pages : 724 pages
Book Rating : 4.8/5 (142 download)

DOWNLOAD NOW!


Book Synopsis Molecular Electronics by : Juan Carlos Cuevas

Download or read book Molecular Electronics written by Juan Carlos Cuevas and published by World Scientific. This book was released on 2010 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1. The birth of molecular electronics. 1.1. Why molecular electronics?. 1.2. A brief history of molecular electronics. 1.3. Scope and structure of the book -- 2. Fabrication of metallic atomic-size contacts. 2.1. Introduction. 2.2. Techniques involving the scanning electron microscope (STM). 2.3. Methods using atomic force microscopes (AFM). 2.4. Contacts between macroscopic wires. 2.5. Transmission electron microscope. 2.6. Mechanically controllable break-junctions (MCBJ). 2.7. Electromigration technique. 2.8. Electrochemical methods. 2.9. Recent developments. 2.10. Electronic transport measurements. 2.11. Exercises -- 3. Contacting single molecules: Experimental techniques. 3.1. Introduction. 3.2. Molecules for molecular electronics. 3.3. Deposition of molecules. 3.4. Contacting single molecules. 3.5. Contacting molecular ensembles. 3.6. Exercises -- 4. The scattering approach to phase-coherent transport in nanocontacts. 4.1. Introduction. 4.2. From mesoscopic conductors to atomic-scale junctions. 4.3. Conductance is transmission : heuristic derivation of the Landauer formula. 4.4. Penetration of a potential barrier : tunnel effect. 4.5. The scattering matrix. 4.6. Multichannel Landauer formula. 4.7. Shot noise. 4.8. Thermal transport and thermoelectric phenomena. 4.9. Limitations of the scattering approach. 4.10. Exercises -- 5. Introduction to Green's function techniques for systems in equilibrium. 5.1. The Schrodinger and Heisenberg pictures. 5.2. Green's functions of a noninteracting electron system. 5.3. Application to tight-binding Hamiltonians. 5.4. Green's functions in time domain. 5.5. Exercises -- 6. Green's functions and Feynman diagrams. 6.1. The interaction picture. 6.2. The time-evolution operator. 6.3. Perturbative expansion of causal Green's functions. 6.4. Wick's theorem. 6.5. Feynman diagrams. 6.6. Feynman diagrams in energy space. 6.7. Electronic self-energy and Dyson's equation. 6.8. Self-consistent diagrammatic theory : the Hartree-Fock approximation. 6.9. The Anderson model and the Kondo effect. 6.10. Final remarks. 6.11. Exercises -- 7. Nonequilibrium Green's functions formalism. 7.1. The Keldysh formalism. 7.2. Diagrammatic expansion in the Keldysh formalism. 7.3. Basic relations and equations in the Keldysh formalism. 7.4. Application of Keldysh formalism to simple transport problems. 7.5. Exercises -- 8. Formulas of the electrical current : exploiting the Keldysh formalism. 8.1. Elastic current : microscopic derivation of the Landauer formula. 8.2. Current through an interacting atomic-scale junction. 8.3. Time-dependent transport in nanoscale junctions. 8.4. Exercises -- 9. Electronic structure I: Tight-binding approach. 9.1. Basics of the tight-binding approach. 9.2. The extended Huckel method. 9.3. Matrix elements in solid state approaches. 9.4. Slater-Koster two-center approximation. 9.5. Some illustrative examples. 9.6. The NRL tight-binding method. 9.7. The tight-binding approach in molecular electronics. 9.8. Exercises -- 10. Electronic structure II : density functional theory. 10.1. Elementary quantum mechanics. 10.2. Early density functional theories. 10.3. The Hohenberg-Kohn theorems. 10.4. The Kohn-Sham approach. 10.5. The exchange-correlation functionals. 10.6. The basic machinery of DFT. 10.7. DFT performance. 10.8. DFT in molecular electronics. 10.9. Exercises -- 11. The conductance of a single atom. 11.1. Landauer approach to conductance: brief reminder. 11.2. Conductance of atomic-scale contacts. 11.3. Conductance histograms. 11.4. Determining the conduction channels. 11.5. The chemical nature of the conduction channels of oneatom contacts. 11.6. Some further issues. 11.7. Conductance fluctuations. 11.8. Atomic chains : parity oscillations in the conductance. 11.9. Concluding remarks. 11.10. Exercises -- 12. Spin-dependent transport in ferromagnetic atomic contacts. 12.1. Conductance of ferromagnetic atomic contacts. 12.2. Magnetoresistance of ferromagnetic atomic contacts. 12.3. Anisotropic magnetoresistance in atomic contacts. 12.4. Concluding remarks and open problems -- 13. Coherent transport through molecular junctions I : basic concepts. 13.1. Identifying the transport mechanism in single-molecule junctions. 13.2. Some lessons from the resonant tunneling model. 13.3. A two-level model. 13.4. Length dependence of the conductance. 13.5. Role of conjugation in [symbol]-electron systems. 13.6. Fano resonances. 13.7. Negative differential resistance. 13.8. Final remarks. 13.9. Exercises -- 14. Coherent transport through molecular junctions II : test-bed molecules. 14.1. Coherent transport through some test-bed molecules. 14.2. Metal-molecule contact : the role of anchoring groups. 14.3. Tuning chemically the conductance : the role of side-groups. 14.4. Controlled STM-based single-molecule experiments. 14.5. Conclusions and open problems -- 15. Single-molecule transistors : Coulomb blockade and Kondo physics. 15.1. Introduction. 15.2. Charging effects in transport through nanoscale devices. 15.3. Single-molecule three-terminal devices. 15.4. Coulomb blockade theory : constant interaction model. 15.5. Towards a theory of Coulomb blockade in molecular transistors. 15.6. Intermediate coupling : cotunneling and Kondo effect. 15.7. Single-molecule transistors : experimental results. 15.8. Exercises -- 16. Vibrationally-induced inelastic current I : experiment. 16.1. Introduction. 16.2. Inelastic electron tunneling spectroscopy (IETS). 16.3. Highly conductive junctions : point-contact spectroscopy (PCS). 16.4. Crossover between PCS and IETS. 16.5. Resonant inelastic electron tunneling spectroscopy (RIETS). 16.6. Summary of vibrational signatures -- 17. Vibrationally-induced inelastic current II : theory. 17.1. Weak electron-phonon coupling regime. 17.2. Intermediate electron-phonon coupling regime. 17.3. Strong electron-phonon coupling regime. 17.4. Concluding remarks and open problems. 17.5. Exercises -- 18. The hopping regime and transport through DNA molecules. 18.1. Signatures of the hopping regime. 18.2. Hopping transport in molecular junctions : experimental examples. 18.3. DNA-based molecular junctions. 18.4. Exercises -- 19. Beyond electrical conductance : shot noise and thermal transport. 19.1. Shot noise in atomic and molecular junctions. 19.2. Heating and heat conduction. 19.3. Thermoelectricity in molecular junctions -- 20. Optical properties of current-carrying molecular junctions. 20.1. Surface-enhanced Raman spectroscopy of molecular junctions. 20.2. Transport mechanisms in irradiated molecular junctions. 20.3. Theory of photon-assisted tunneling. 20.4. Experiments on radiation-induced transport in atomic and molecular junctions. 20.5. Resonant current amplification and other transport phenomena in ac driven molecular junctions. 20.6. Fluorescence from current-carrying molecular junctions. 20.7. Molecular optoelectronic devices. 20.8. Final remarks. 20.9. Exercises -- 21. What is missing in this book?

Charge and Exciton Transport through Molecular Wires

Download Charge and Exciton Transport through Molecular Wires PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 352763309X
Total Pages : 293 pages
Book Rating : 4.5/5 (276 download)

DOWNLOAD NOW!


Book Synopsis Charge and Exciton Transport through Molecular Wires by : Laurens D. A. Siebbeles

Download or read book Charge and Exciton Transport through Molecular Wires written by Laurens D. A. Siebbeles and published by John Wiley & Sons. This book was released on 2011-07-18 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: As functional elements in opto-electronic devices approach the singlemolecule limit, conducting organic molecular wires are the appropriate interconnects that enable transport of charges and charge-like particles such as excitons within the device. Reproducible syntheses and a thorough understanding of the underlying principles are therefore indispensable for applications like even smaller transistors, molecular machines and light-harvesting materials. Bringing together experiment and theory to enable applications in real-life devices, this handbook and ready reference provides essential information on how to control and direct charge transport. Readers can therefore obtain a balanced view of charge and exciton transport, covering characterization techniques such as spectroscopy and current measurements together with quantitative models. Researchers are thus able to improve the performance of newly developed devices, while an additional overview of synthesis methods highlights ways of producing different organic wires. Written with the following market in mind: chemists, molecular physicists, materials scientists and electrical engineers.

Organic and Molecular Electronics

Download Organic and Molecular Electronics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118879287
Total Pages : 509 pages
Book Rating : 4.1/5 (188 download)

DOWNLOAD NOW!


Book Synopsis Organic and Molecular Electronics by : Michael C. Petty

Download or read book Organic and Molecular Electronics written by Michael C. Petty and published by John Wiley & Sons. This book was released on 2019-01-04 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the interdisciplinary subject of molecular electronics, revised and updated The revised second edition of Organic and Molecular Electronics offers a guide to the fabrication and application of a wide range of electronic devices based around organic materials and low-cost technologies. Since the publication of the first edition, organic electronics has greatly progressed, as evidenced by the myriad companies that have been established to explore the new possibilities. The text contains an introduction into the physics and chemistry of organic materials, and includes a discussion of the means to process the materials into a form (in most cases, a thin film) where they can be exploited in electronic and optoelectronic devices. The text covers the areas of application and potential application that range from chemical and biochemical sensors to plastic light emitting displays. The updated second edition reflects the recent progress in both organic and molecular electronics and: Offers an accessible resource for a wide range of readers Contains a comprehensive text that covers topics including electrical conductivity, optical phenomena, electroactive organic compounds, tools for molecular electronics and much more Includes illustrative examples based on the most recent research Presents problems at the end of each chapter to help reinforce key points Written mainly for engineering students, Organic and Molecular Electronics: From Principles to Practice provides an updated introduction to the interdisciplinary subjects of organic electronics and molecular electronics with detailed examples of applications.

Technomimetics versus Biomimetics

Download Technomimetics versus Biomimetics PDF Online Free

Author :
Publisher : Cambridge Scholars Publishing
ISBN 13 : 1527550370
Total Pages : 287 pages
Book Rating : 4.5/5 (275 download)

DOWNLOAD NOW!


Book Synopsis Technomimetics versus Biomimetics by : Ruby Srivastava

Download or read book Technomimetics versus Biomimetics written by Ruby Srivastava and published by Cambridge Scholars Publishing. This book was released on 2020-05-05 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nature has always been an inspiration to humans in terms of using minimum resources to produce maximum results, and in its ability to allow organisms to operate and fit the required environment. There are a number of challenges for humans attempting to mimic nature in this regard given the endless possibilities, such as in using techno-biomimetic devices, fully-grown intelligent robots, autonomous systems and vehicles, molecular computers and nanotechnological materials, which are currently being are developed. This book investigates the various advantages, challenges and limitations of data science and artificial intelligence in techno-biomimetic systems.

Nanogap Electrodes

Download Nanogap Electrodes PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 3527659587
Total Pages : 432 pages
Book Rating : 4.5/5 (276 download)

DOWNLOAD NOW!


Book Synopsis Nanogap Electrodes by : Tao Li

Download or read book Nanogap Electrodes written by Tao Li and published by John Wiley & Sons. This book was released on 2021-07-14 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unique in its scope, this book comprehensively combines various synthesis strategies with applications for nanogap electrodes. Clearly divided into four parts, the monograph begins with an introduction to molecular electronics and electron transport in molecular junctions, before moving on to a whole section devoted to synthesis and characterization. The third part looks at applications with single molecules or self-assembled monolayers, and the whole is rounded off with a section on interesting phenomena observed using molecular-based devices.