Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Molecular Dynamics And Machine Learning In Drug Discovery
Download Molecular Dynamics And Machine Learning In Drug Discovery full books in PDF, epub, and Kindle. Read online Molecular Dynamics And Machine Learning In Drug Discovery ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Molecular Dynamics and Machine Learning in Drug Discovery by : Sergio Decherchi
Download or read book Molecular Dynamics and Machine Learning in Drug Discovery written by Sergio Decherchi and published by Frontiers Media SA. This book was released on 2021-06-08 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dr. Sergio Decherchi and Dr. Andrea Cavalli are co-founders of BiKi Technologies s.r.l. - a company that commercializes a Molecular Dynamics-based software suite for drug discovery. All other Topic Editors declare no competing interests with regards to the Research Topic subject.
Book Synopsis Artificial Intelligence in Drug Discovery by : Nathan Brown
Download or read book Artificial Intelligence in Drug Discovery written by Nathan Brown and published by Royal Society of Chemistry. This book was released on 2020-11-04 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: Following significant advances in deep learning and related areas interest in artificial intelligence (AI) has rapidly grown. In particular, the application of AI in drug discovery provides an opportunity to tackle challenges that previously have been difficult to solve, such as predicting properties, designing molecules and optimising synthetic routes. Artificial Intelligence in Drug Discovery aims to introduce the reader to AI and machine learning tools and techniques, and to outline specific challenges including designing new molecular structures, synthesis planning and simulation. Providing a wealth of information from leading experts in the field this book is ideal for students, postgraduates and established researchers in both industry and academia.
Book Synopsis Advanced AI Techniques and Applications in Bioinformatics by : Loveleen Gaur
Download or read book Advanced AI Techniques and Applications in Bioinformatics written by Loveleen Gaur and published by CRC Press. This book was released on 2021-10-17 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: The advanced AI techniques are essential for resolving various problematic aspects emerging in the field of bioinformatics. This book covers the recent approaches in artificial intelligence and machine learning methods and their applications in Genome and Gene editing, cancer drug discovery classification, and the protein folding algorithms among others. Deep learning, which is widely used in image processing, is also applicable in bioinformatics as one of the most popular artificial intelligence approaches. The wide range of applications discussed in this book are an indispensable resource for computer scientists, engineers, biologists, mathematicians, physicians, and medical informaticists. Features: Focusses on the cross-disciplinary relation between computer science and biology and the role of machine learning methods in resolving complex problems in bioinformatics Provides a comprehensive and balanced blend of topics and applications using various advanced algorithms Presents cutting-edge research methodologies in the area of AI methods when applied to bioinformatics and innovative solutions Discusses the AI/ML techniques, their use, and their potential for use in common and future bioinformatics applications Includes recent achievements in AI and bioinformatics contributed by a global team of researchers
Book Synopsis Artificial Intelligence in Drug Design by : Alexander Heifetz
Download or read book Artificial Intelligence in Drug Design written by Alexander Heifetz and published by Humana. This book was released on 2022-11-05 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume looks at applications of artificial intelligence (AI), machine learning (ML), and deep learning (DL) in drug design. The chapters in this book describe how AI/ML/DL approaches can be applied to accelerate and revolutionize traditional drug design approaches such as: structure- and ligand-based, augmented and multi-objective de novo drug design, SAR and big data analysis, prediction of binding/activity, ADMET, pharmacokinetics and drug-target residence time, precision medicine and selection of favorable chemical synthetic routes. How broadly are these approaches applied and where do they maximally impact productivity today and potentially in the near future. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary software and tools, step-by-step, readily reproducible modeling protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and unique, Artificial Intelligence in Drug Design is a valuable resource for structural and molecular biologists, computational and medicinal chemists, pharmacologists and drug designers.
Book Synopsis Biophysical and Computational Tools in Drug Discovery by : Anil Kumar Saxena
Download or read book Biophysical and Computational Tools in Drug Discovery written by Anil Kumar Saxena and published by Springer Nature. This book was released on 2021-10-18 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews recent physicochemical and biophysical techniques applied in drug discovery research, and it outlines the latest advances in computational drug design. Divided into 10 chapters, the book discusses about the role of structural biology in drug discovery, and offers useful application cases of several biophysical and computational methods, including time-resolved fluorometry (TRF) with Förster resonance energy transfer (FRET), X-Ray crystallography, nuclear magnetic resonance spectroscopy, mass spectroscopy, generative machine learning for inverse molecular design, quantum mechanics/molecular mechanics (QM/MM,ONIOM) and quantum molecular dynamics (QMT) methods. Particular attention is given to computational search techniques applied to peptide vaccines using novel mathematical descriptors and structure and ligand-based virtual screening techniques in drug discovery research. Given its scope, the book is a valuable resource for students, researchers and professionals from pharmaceutical industry interested in drug design and discovery.
Book Synopsis Computational Pharmaceutics by : Defang Ouyang
Download or read book Computational Pharmaceutics written by Defang Ouyang and published by John Wiley & Sons. This book was released on 2015-07-20 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular modeling techniques have been widely used in drug discovery fields for rational drug design and compound screening. Now these techniques are used to model or mimic the behavior of molecules, and help us study formulation at the molecular level. Computational pharmaceutics enables us to understand the mechanism of drug delivery, and to develop new drug delivery systems. The book discusses the modeling of different drug delivery systems, including cyclodextrins, solid dispersions, polymorphism prediction, dendrimer-based delivery systems, surfactant-based micelle, polymeric drug delivery systems, liposome, protein/peptide formulations, non-viral gene delivery systems, drug-protein binding, silica nanoparticles, carbon nanotube-based drug delivery systems, diamond nanoparticles and layered double hydroxides (LDHs) drug delivery systems. Although there are a number of existing books about rational drug design with molecular modeling techniques, these techniques still look mysterious and daunting for pharmaceutical scientists. This book fills the gap between pharmaceutics and molecular modeling, and presents a systematic and overall introduction to computational pharmaceutics. It covers all introductory, advanced and specialist levels. It provides a totally different perspective to pharmaceutical scientists, and will greatly facilitate the development of pharmaceutics. It also helps computational chemists to look for the important questions in the drug delivery field. This book is included in the Advances in Pharmaceutical Technology book series.
Book Synopsis Machine Learning Methodologies To Study Molecular Interactions by : Elif Ozkirimli
Download or read book Machine Learning Methodologies To Study Molecular Interactions written by Elif Ozkirimli and published by Frontiers Media SA. This book was released on 2022-01-21 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dr. Elif Ozkirimli is a full time employee of F. Hoffmann-La Roche AG, Switzerland and Dr. Artur Yakimovich is a full time employee of Roche Products Limited, UK. All other Topic Editors declare no competing interests with regards to the Research Topic.
Book Synopsis Drug Discovery and Development by : Vishwanath Gaitonde
Download or read book Drug Discovery and Development written by Vishwanath Gaitonde and published by BoD – Books on Demand. This book was released on 2020-03-11 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: The process of drug discovery and development is a complex multistage logistics project spanned over 10-15 years with an average budget exceeding 1 billion USD. Starting with target identification and synthesizing anywhere between 10k to 15k synthetic compounds to potentially obtain the final drug that reaches the market involves a complicated maze with multiple inter- and intra-operative fields. Topics described in this book emphasize the progresses in computational applications, pharmacokinetics advances, and molecular modeling developments. In addition the book also contains special topics describing target deorphaning in Mycobacterium tuberculosis, therapy treatment of some rare diseases, and developments in the pediatric drug discovery process.
Book Synopsis Protein Allostery in Drug Discovery by : Jian Zhang
Download or read book Protein Allostery in Drug Discovery written by Jian Zhang and published by Springer Nature. This book was released on 2019-11-09 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book focuses on protein allostery in drug discovery. Allosteric regulation, ʹthe second secret of lifeʹ, fine-tunes virtually most biological processes and controls physiological activities. Allostery can both cause human diseases and contribute to development of new therapeutics. Allosteric drugs exhibit unparalleled advantages compared to conventional orthosteric drugs, rendering the development of allosteric modulators as an appealing strategy to improve selectivity and pharmacodynamic properties in drug leads. The Series delineates the immense significance of protein allostery—as demonstrated by recent advances in the repertoires of the concept, its mechanistic mechanisms, and networks, characteristics of allosteric proteins, modulators, and sites, development of computational and experimental methods to predict allosteric sites, small-molecule allosteric modulators of protein kinases and G-protein coupled receptors, engineering allostery, and the underlying role of allostery in precise medicine. Comprehensive understanding of protein allostery is expected to guide the rational design of allosteric drugs for the treatment of human diseases. The book would be useful for scientists and students in the field of protein science and Pharmacology etc.
Book Synopsis Computational Approaches: Drug Discovery and Design in Medicinal Chemistry and Bioinformatics by : Marco Tutone
Download or read book Computational Approaches: Drug Discovery and Design in Medicinal Chemistry and Bioinformatics written by Marco Tutone and published by . This book was released on 2021 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of original research articles in the field of computer-aided drug design. It reports the use of current and validated computational approaches applied to drug discovery as well as the development of new computational tools to identify new and more potent drugs.
Book Synopsis Advances in Peptide and Peptidomimetic Design Inspiring Basic Science and Drug Discovery by : Henry I. Mosberg
Download or read book Advances in Peptide and Peptidomimetic Design Inspiring Basic Science and Drug Discovery written by Henry I. Mosberg and published by MDPI. This book was released on 2020-03-13 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Peptide and Peptidomimetic Design Inspiring Basic Science and Drug Discovery is a book dedicated to Prof. Victor J. Hruby on the occasion of his 80th birthday. This book includes twenty contributions from authors representing diverse multidisciplinary fields of scientific expertise, and is focused on the extraordinary potential of peptides and peptidomimetics as a surging therapeutic modality and as tools for basic research and technology development.
Book Synopsis Molecular Modeling in Drug Design by : Rebecca Wade
Download or read book Molecular Modeling in Drug Design written by Rebecca Wade and published by MDPI. This book was released on 2019-03-26 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the first attempts at structure-based drug design about four decades ago, molecular modelling techniques for drug design have developed enormously, along with the increasing computational power and structural and biological information of active compounds and potential target molecules. Nowadays, molecular modeling can be considered to be an integral component of the modern drug discovery and development toolbox. Nevertheless, there are still many methodological challenges to be overcome in the application of molecular modeling approaches to drug discovery. The eight original research and five review articles collected in this book provide a snapshot of the state-of-the-art of molecular modeling in drug design, illustrating recent advances and critically discussing important challenges. The topics covered include virtual screening and pharmacophore modelling, chemoinformatic applications of artificial intelligence and machine learning, molecular dynamics simulation and enhanced sampling to investigate contributions of molecular flexibility to drug–receptor interactions, the modeling of drug–receptor solvation, hydrogen bonding and polarization, and drug design against protein–protein interfaces and membrane protein receptors.
Book Synopsis Advances in Protein Molecular and Structural Biology Methods by : Timir Tripathi
Download or read book Advances in Protein Molecular and Structural Biology Methods written by Timir Tripathi and published by Academic Press. This book was released on 2022-01-14 with total page 716 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Protein Molecular and Structural Biology Methods offers a complete overview of the latest tools and methods applicable to the study of proteins at the molecular and structural level. The book begins with sections exploring tools to optimize recombinant protein expression and biophysical techniques such as fluorescence spectroscopy, NMR, mass spectrometry, cryo-electron microscopy, and X-ray crystallography. It then moves towards computational approaches, considering structural bioinformatics, molecular dynamics simulations, and deep machine learning technologies. The book also covers methods applied to intrinsically disordered proteins (IDPs)followed by chapters on protein interaction networks, protein function, and protein design and engineering. It provides researchers with an extensive toolkit of methods and techniques to draw from when conducting their own experimental work, taking them from foundational concepts to practical application. - Presents a thorough overview of the latest and emerging methods and technologies for protein study - Explores biophysical techniques, including nuclear magnetic resonance, X-ray crystallography, and cryo-electron microscopy - Includes computational and machine learning methods - Features a section dedicated to tools and techniques specific to studying intrinsically disordered proteins
Book Synopsis Machine Learning Meets Quantum Physics by : Kristof T. Schütt
Download or read book Machine Learning Meets Quantum Physics written by Kristof T. Schütt and published by Springer Nature. This book was released on 2020-06-03 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designing molecules and materials with desired properties is an important prerequisite for advancing technology in our modern societies. This requires both the ability to calculate accurate microscopic properties, such as energies, forces and electrostatic multipoles of specific configurations, as well as efficient sampling of potential energy surfaces to obtain corresponding macroscopic properties. Tools that can provide this are accurate first-principles calculations rooted in quantum mechanics, and statistical mechanics, respectively. Unfortunately, they come at a high computational cost that prohibits calculations for large systems and long time-scales, thus presenting a severe bottleneck both for searching the vast chemical compound space and the stupendously many dynamical configurations that a molecule can assume. To overcome this challenge, recently there have been increased efforts to accelerate quantum simulations with machine learning (ML). This emerging interdisciplinary community encompasses chemists, material scientists, physicists, mathematicians and computer scientists, joining forces to contribute to the exciting hot topic of progressing machine learning and AI for molecules and materials. The book that has emerged from a series of workshops provides a snapshot of this rapidly developing field. It contains tutorial material explaining the relevant foundations needed in chemistry, physics as well as machine learning to give an easy starting point for interested readers. In addition, a number of research papers defining the current state-of-the-art are included. The book has five parts (Fundamentals, Incorporating Prior Knowledge, Deep Learning of Atomistic Representations, Atomistic Simulations and Discovery and Design), each prefaced by editorial commentary that puts the respective parts into a broader scientific context.
Book Synopsis Chemoinformatics in Drug Discovery by : Tudor I. Oprea
Download or read book Chemoinformatics in Drug Discovery written by Tudor I. Oprea and published by John Wiley & Sons. This book was released on 2006-03-06 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook provides the first-ever inside view of today's integrated approach to rational drug design. Chemoinformatics experts from large pharmaceutical companies, as well as from chemoinformatics service providers and from academia demonstrate what can be achieved today by harnessing the power of computational methods for the drug discovery process. With the user rather than the developer of chemoinformatics software in mind, this book describes the successful application of computational tools to real-life problems and presents solution strategies to commonly encountered problems. It shows how almost every step of the drug discovery pipeline can be optimized and accelerated by using chemoinformatics tools -- from the management of compound databases to targeted combinatorial synthesis, virtual screening and efficient hit-to-lead transition. An invaluable resource for drug developers and medicinal chemists in academia and industry.
Book Synopsis Deep Learning for the Life Sciences by : Bharath Ramsundar
Download or read book Deep Learning for the Life Sciences written by Bharath Ramsundar and published by O'Reilly Media. This book was released on 2019-04-10 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning has already achieved remarkable results in many fields. Now it’s making waves throughout the sciences broadly and the life sciences in particular. This practical book teaches developers and scientists how to use deep learning for genomics, chemistry, biophysics, microscopy, medical analysis, and other fields. Ideal for practicing developers and scientists ready to apply their skills to scientific applications such as biology, genetics, and drug discovery, this book introduces several deep network primitives. You’ll follow a case study on the problem of designing new therapeutics that ties together physics, chemistry, biology, and medicine—an example that represents one of science’s greatest challenges. Learn the basics of performing machine learning on molecular data Understand why deep learning is a powerful tool for genetics and genomics Apply deep learning to understand biophysical systems Get a brief introduction to machine learning with DeepChem Use deep learning to analyze microscopic images Analyze medical scans using deep learning techniques Learn about variational autoencoders and generative adversarial networks Interpret what your model is doing and how it’s working
Book Synopsis Artificial Intelligence and Machine Learning in Drug Design and Development by : Abhirup Khanna
Download or read book Artificial Intelligence and Machine Learning in Drug Design and Development written by Abhirup Khanna and published by John Wiley & Sons. This book was released on 2024-07-18 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is a comprehensive guide that explores the use of artificial intelligence and machine learning in drug discovery and development covering a range of topics, including the use of molecular modeling, docking, identifying targets, selecting compounds, and optimizing drugs. The intersection of Artificial Intelligence (AI) and Machine Learning (ML) within the field of drug design and development represents a pivotal moment in the history of healthcare and pharmaceuticals. The remarkable synergy between cutting-edge technology and the life sciences has ushered in a new era of possibilities, offering unprecedented opportunities, formidable challenges, and a tantalizing glimpse into the future of medicine. AI can be applied to all the key areas of the pharmaceutical industry, such as drug discovery and development, drug repurposing, and improving productivity within a short period. Contemporary methods have shown promising results in facilitating the discovery of drugs to target different diseases. Moreover, AI helps in predicting the efficacy and safety of molecules and gives researchers a much broader chemical pallet for the selection of the best molecules for drug testing and delivery. In this context, drug repurposing is another important topic where AI can have a substantial impact. With the vast amount of clinical and pharmaceutical data available to date, AI algorithms find suitable drugs that can be repurposed for alternative use in medicine. This book is a comprehensive exploration of this dynamic and rapidly evolving field. In an era where precision and efficiency are paramount in drug discovery, AI and ML have emerged as transformative tools, reshaping the way we identify, design, and develop pharmaceuticals. This book is a testament to the profound impact these technologies have had and will continue to have on the pharmaceutical industry, healthcare, and ultimately, patient well-being. The editors of this volume have assembled a distinguished group of experts, researchers, and thought leaders from both the AI, ML, and pharmaceutical domains. Their collective knowledge and insights illuminate the multifaceted landscape of AI and ML in drug design and development, offering a roadmap for navigating its complexities and harnessing its potential. In each section, readers will find a rich tapestry of knowledge, case studies, and expert opinions, providing a 360-degree view of AI and ML’s role in drug design and development. Whether you are a researcher, scientist, industry professional, policymaker, or simply curious about the future of medicine, this book offers 19 state-of-the-art chapters providing valuable insights and a compass to navigate the exciting journey ahead. Audience The book is a valuable resource for a wide range of professionals in the pharmaceutical and allied industries including researchers, scientists, engineers, and laboratory workers in the field of drug discovery and development, who want to learn about the latest techniques in machine learning and AI, as well as information technology professionals who are interested in the application of machine learning and artificial intelligence in drug development.