Architecting Modern Data Platforms

Download Architecting Modern Data Platforms PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491969229
Total Pages : 688 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Architecting Modern Data Platforms by : Jan Kunigk

Download or read book Architecting Modern Data Platforms written by Jan Kunigk and published by "O'Reilly Media, Inc.". This book was released on 2018-12-05 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt: There’s a lot of information about big data technologies, but splicing these technologies into an end-to-end enterprise data platform is a daunting task not widely covered. With this practical book, you’ll learn how to build big data infrastructure both on-premises and in the cloud and successfully architect a modern data platform. Ideal for enterprise architects, IT managers, application architects, and data engineers, this book shows you how to overcome the many challenges that emerge during Hadoop projects. You’ll explore the vast landscape of tools available in the Hadoop and big data realm in a thorough technical primer before diving into: Infrastructure: Look at all component layers in a modern data platform, from the server to the data center, to establish a solid foundation for data in your enterprise Platform: Understand aspects of deployment, operation, security, high availability, and disaster recovery, along with everything you need to know to integrate your platform with the rest of your enterprise IT Taking Hadoop to the cloud: Learn the important architectural aspects of running a big data platform in the cloud while maintaining enterprise security and high availability

Modern Big Data Architectures

Download Modern Big Data Architectures PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119597846
Total Pages : 208 pages
Book Rating : 4.1/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Modern Big Data Architectures by : Dominik Ryzko

Download or read book Modern Big Data Architectures written by Dominik Ryzko and published by John Wiley & Sons. This book was released on 2020-03-31 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides an up-to-date analysis of big data and multi-agent systems The term Big Data refers to the cases, where data sets are too large or too complex for traditional data-processing software. With the spread of new concepts such as Edge Computing or the Internet of Things, production, processing and consumption of this data becomes more and more distributed. As a result, applications increasingly require multiple agents that can work together. A multi-agent system (MAS) is a self-organized computer system that comprises multiple intelligent agents interacting to solve problems that are beyond the capacities of individual agents. Modern Big Data Architectures examines modern concepts and architecture for Big Data processing and analytics. This unique, up-to-date volume provides joint analysis of big data and multi-agent systems, with emphasis on distributed, intelligent processing of very large data sets. Each chapter contains practical examples and detailed solutions suitable for a wide variety of applications. The author, an internationally-recognized expert in Big Data and distributed Artificial Intelligence, demonstrates how base concepts such as agent, actor, and micro-service have reached a point of convergence—enabling next generation systems to be built by incorporating the best aspects of the field. This book: Illustrates how data sets are produced and how they can be utilized in various areas of industry and science Explains how to apply common computational models and state-of-the-art architectures to process Big Data tasks Discusses current and emerging Big Data applications of Artificial Intelligence Modern Big Data Architectures: A Multi-Agent Systems Perspective is a timely and important resource for data science professionals and students involved in Big Data analytics, and machine and artificial learning.

Security, Privacy, and Trust in Modern Data Management

Download Security, Privacy, and Trust in Modern Data Management PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540698612
Total Pages : 467 pages
Book Rating : 4.5/5 (46 download)

DOWNLOAD NOW!


Book Synopsis Security, Privacy, and Trust in Modern Data Management by : Milan Petkovic

Download or read book Security, Privacy, and Trust in Modern Data Management written by Milan Petkovic and published by Springer Science & Business Media. This book was released on 2007-06-12 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: The vision of ubiquitous computing and ambient intelligence describes a world of technology which is present anywhere, anytime in the form of smart, sensible devices that communicate with each other and provide personalized services. However, open interconnected systems are much more vulnerable to attacks and unauthorized data access. In the context of this threat, this book provides a comprehensive guide to security and privacy and trust in data management.

Designing Data-Intensive Applications

Download Designing Data-Intensive Applications PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491903104
Total Pages : 658 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Designing Data-Intensive Applications by : Martin Kleppmann

Download or read book Designing Data-Intensive Applications written by Martin Kleppmann and published by "O'Reilly Media, Inc.". This book was released on 2017-03-16 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data is at the center of many challenges in system design today. Difficult issues need to be figured out, such as scalability, consistency, reliability, efficiency, and maintainability. In addition, we have an overwhelming variety of tools, including relational databases, NoSQL datastores, stream or batch processors, and message brokers. What are the right choices for your application? How do you make sense of all these buzzwords? In this practical and comprehensive guide, author Martin Kleppmann helps you navigate this diverse landscape by examining the pros and cons of various technologies for processing and storing data. Software keeps changing, but the fundamental principles remain the same. With this book, software engineers and architects will learn how to apply those ideas in practice, and how to make full use of data in modern applications. Peer under the hood of the systems you already use, and learn how to use and operate them more effectively Make informed decisions by identifying the strengths and weaknesses of different tools Navigate the trade-offs around consistency, scalability, fault tolerance, and complexity Understand the distributed systems research upon which modern databases are built Peek behind the scenes of major online services, and learn from their architectures

Designing Big Data Platforms

Download Designing Big Data Platforms PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119690951
Total Pages : 336 pages
Book Rating : 4.1/5 (196 download)

DOWNLOAD NOW!


Book Synopsis Designing Big Data Platforms by : Yusuf Aytas

Download or read book Designing Big Data Platforms written by Yusuf Aytas and published by John Wiley & Sons. This book was released on 2021-07-08 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: DESIGNING BIG DATA PLATFORMS Provides expert guidance and valuable insights on getting the most out of Big Data systems An array of tools are currently available for managing and processing data—some are ready-to-go solutions that can be immediately deployed, while others require complex and time-intensive setups. With such a vast range of options, choosing the right tool to build a solution can be complicated, as can determining which tools work well with each other. Designing Big Data Platforms provides clear and authoritative guidance on the critical decisions necessary for successfully deploying, operating, and maintaining Big Data systems. This highly practical guide helps readers understand how to process large amounts of data with well-known Linux tools and database solutions, use effective techniques to collect and manage data from multiple sources, transform data into meaningful business insights, and much more. Author Yusuf Aytas, a software engineer with a vast amount of big data experience, discusses the design of the ideal Big Data platform: one that meets the needs of data analysts, data engineers, data scientists, software engineers, and a spectrum of other stakeholders across an organization. Detailed yet accessible chapters cover key topics such as stream data processing, data analytics, data science, data discovery, and data security. This real-world manual for Big Data technologies: Provides up-to-date coverage of the tools currently used in Big Data processing and management Offers step-by-step guidance on building a data pipeline, from basic scripting to distributed systems Highlights and explains how data is processed at scale Includes an introduction to the foundation of a modern data platform Designing Big Data Platforms: How to Use, Deploy, and Maintain Big Data Systems is a must-have for all professionals working with Big Data, as well researchers and students in computer science and related fields.

Database Internals

Download Database Internals PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1492040312
Total Pages : 373 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Database Internals by : Alex Petrov

Download or read book Database Internals written by Alex Petrov and published by O'Reilly Media. This book was released on 2019-09-13 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: When it comes to choosing, using, and maintaining a database, understanding its internals is essential. But with so many distributed databases and tools available today, it’s often difficult to understand what each one offers and how they differ. With this practical guide, Alex Petrov guides developers through the concepts behind modern database and storage engine internals. Throughout the book, you’ll explore relevant material gleaned from numerous books, papers, blog posts, and the source code of several open source databases. These resources are listed at the end of parts one and two. You’ll discover that the most significant distinctions among many modern databases reside in subsystems that determine how storage is organized and how data is distributed. This book examines: Storage engines: Explore storage classification and taxonomy, and dive into B-Tree-based and immutable Log Structured storage engines, with differences and use-cases for each Storage building blocks: Learn how database files are organized to build efficient storage, using auxiliary data structures such as Page Cache, Buffer Pool and Write-Ahead Log Distributed systems: Learn step-by-step how nodes and processes connect and build complex communication patterns Database clusters: Which consistency models are commonly used by modern databases and how distributed storage systems achieve consistency

Big Data

Download Big Data PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638351104
Total Pages : 481 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Big Data by : James Warren

Download or read book Big Data written by James Warren and published by Simon and Schuster. This book was released on 2015-04-29 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Big Data teaches you to build big data systems using an architecture that takes advantage of clustered hardware along with new tools designed specifically to capture and analyze web-scale data. It describes a scalable, easy-to-understand approach to big data systems that can be built and run by a small team. Following a realistic example, this book guides readers through the theory of big data systems, how to implement them in practice, and how to deploy and operate them once they're built. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Book Web-scale applications like social networks, real-time analytics, or e-commerce sites deal with a lot of data, whose volume and velocity exceed the limits of traditional database systems. These applications require architectures built around clusters of machines to store and process data of any size, or speed. Fortunately, scale and simplicity are not mutually exclusive. Big Data teaches you to build big data systems using an architecture designed specifically to capture and analyze web-scale data. This book presents the Lambda Architecture, a scalable, easy-to-understand approach that can be built and run by a small team. You'll explore the theory of big data systems and how to implement them in practice. In addition to discovering a general framework for processing big data, you'll learn specific technologies like Hadoop, Storm, and NoSQL databases. This book requires no previous exposure to large-scale data analysis or NoSQL tools. Familiarity with traditional databases is helpful. What's Inside Introduction to big data systems Real-time processing of web-scale data Tools like Hadoop, Cassandra, and Storm Extensions to traditional database skills About the Authors Nathan Marz is the creator of Apache Storm and the originator of the Lambda Architecture for big data systems. James Warren is an analytics architect with a background in machine learning and scientific computing. Table of Contents A new paradigm for Big Data PART 1 BATCH LAYER Data model for Big Data Data model for Big Data: Illustration Data storage on the batch layer Data storage on the batch layer: Illustration Batch layer Batch layer: Illustration An example batch layer: Architecture and algorithms An example batch layer: Implementation PART 2 SERVING LAYER Serving layer Serving layer: Illustration PART 3 SPEED LAYER Realtime views Realtime views: Illustration Queuing and stream processing Queuing and stream processing: Illustration Micro-batch stream processing Micro-batch stream processing: Illustration Lambda Architecture in depth

Modern Data Science with R

Download Modern Data Science with R PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429575394
Total Pages : 830 pages
Book Rating : 4.4/5 (295 download)

DOWNLOAD NOW!


Book Synopsis Modern Data Science with R by : Benjamin S. Baumer

Download or read book Modern Data Science with R written by Benjamin S. Baumer and published by CRC Press. This book was released on 2021-03-31 with total page 830 pages. Available in PDF, EPUB and Kindle. Book excerpt: From a review of the first edition: "Modern Data Science with R... is rich with examples and is guided by a strong narrative voice. What’s more, it presents an organizing framework that makes a convincing argument that data science is a course distinct from applied statistics" (The American Statistician). Modern Data Science with R is a comprehensive data science textbook for undergraduates that incorporates statistical and computational thinking to solve real-world data problems. Rather than focus exclusively on case studies or programming syntax, this book illustrates how statistical programming in the state-of-the-art R/RStudio computing environment can be leveraged to extract meaningful information from a variety of data in the service of addressing compelling questions. The second edition is updated to reflect the growing influence of the tidyverse set of packages. All code in the book has been revised and styled to be more readable and easier to understand. New functionality from packages like sf, purrr, tidymodels, and tidytext is now integrated into the text. All chapters have been revised, and several have been split, re-organized, or re-imagined to meet the shifting landscape of best practice.

Data-Driven Science and Engineering

Download Data-Driven Science and Engineering PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1009098489
Total Pages : 615 pages
Book Rating : 4.0/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Data-Driven Science and Engineering by : Steven L. Brunton

Download or read book Data-Driven Science and Engineering written by Steven L. Brunton and published by Cambridge University Press. This book was released on 2022-05-05 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Data Science Strategy For Dummies

Download Data Science Strategy For Dummies PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119566274
Total Pages : 423 pages
Book Rating : 4.1/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Data Science Strategy For Dummies by : Ulrika Jägare

Download or read book Data Science Strategy For Dummies written by Ulrika Jägare and published by John Wiley & Sons. This book was released on 2019-06-12 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: All the answers to your data science questions Over half of all businesses are using data science to generate insights and value from big data. How are they doing it? Data Science Strategy For Dummies answers all your questions about how to build a data science capability from scratch, starting with the “what” and the “why” of data science and covering what it takes to lead and nurture a top-notch team of data scientists. With this book, you’ll learn how to incorporate data science as a strategic function into any business, large or small. Find solutions to your real-life challenges as you uncover the stories and value hidden within data. Learn exactly what data science is and why it’s important Adopt a data-driven mindset as the foundation to success Understand the processes and common roadblocks behind data science Keep your data science program focused on generating business value Nurture a top-quality data science team In non-technical language, Data Science Strategy For Dummies outlines new perspectives and strategies to effectively lead analytics and data science functions to create real value.

Data Management at Scale

Download Data Management at Scale PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492054739
Total Pages : 404 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Data Management at Scale by : Piethein Strengholt

Download or read book Data Management at Scale written by Piethein Strengholt and published by "O'Reilly Media, Inc.". This book was released on 2020-07-29 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: As data management and integration continue to evolve rapidly, storing all your data in one place, such as a data warehouse, is no longer scalable. In the very near future, data will need to be distributed and available for several technological solutions. With this practical book, you’ll learnhow to migrate your enterprise from a complex and tightly coupled data landscape to a more flexible architecture ready for the modern world of data consumption. Executives, data architects, analytics teams, and compliance and governance staff will learn how to build a modern scalable data landscape using the Scaled Architecture, which you can introduce incrementally without a large upfront investment. Author Piethein Strengholt provides blueprints, principles, observations, best practices, and patterns to get you up to speed. Examine data management trends, including technological developments, regulatory requirements, and privacy concerns Go deep into the Scaled Architecture and learn how the pieces fit together Explore data governance and data security, master data management, self-service data marketplaces, and the importance of metadata

Data Mesh

Download Data Mesh PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492092363
Total Pages : 387 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Data Mesh by : Zhamak Dehghani

Download or read book Data Mesh written by Zhamak Dehghani and published by "O'Reilly Media, Inc.". This book was released on 2022-03-08 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many enterprises are investing in a next-generation data lake, hoping to democratize data at scale to provide business insights and ultimately make automated intelligent decisions. In this practical book, author Zhamak Dehghani reveals that, despite the time, money, and effort poured into them, data warehouses and data lakes fail when applied at the scale and speed of today's organizations. A distributed data mesh is a better choice. Dehghani guides architects, technical leaders, and decision makers on their journey from monolithic big data architecture to a sociotechnical paradigm that draws from modern distributed architecture. A data mesh considers domains as a first-class concern, applies platform thinking to create self-serve data infrastructure, treats data as a product, and introduces a federated and computational model of data governance. This book shows you why and how. Examine the current data landscape from the perspective of business and organizational needs, environmental challenges, and existing architectures Analyze the landscape's underlying characteristics and failure modes Get a complete introduction to data mesh principles and its constituents Learn how to design a data mesh architecture Move beyond a monolithic data lake to a distributed data mesh.

The Manga Guide to Databases

Download The Manga Guide to Databases PDF Online Free

Author :
Publisher : No Starch Press
ISBN 13 : 1593271905
Total Pages : 228 pages
Book Rating : 4.5/5 (932 download)

DOWNLOAD NOW!


Book Synopsis The Manga Guide to Databases by : Mana Takahashi

Download or read book The Manga Guide to Databases written by Mana Takahashi and published by No Starch Press. This book was released on 2009-01-15 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Want to learn about databases without the tedium? With its unique combination of Japanese-style comics and serious educational content, The Manga Guide to Databases is just the book for you. Princess Ruruna is stressed out. With the king and queen away, she has to manage the Kingdom of Kod's humongous fruit-selling empire. Overseas departments, scads of inventory, conflicting prices, and so many customers! It's all such a confusing mess. But a mysterious book and a helpful fairy promise to solve her organizational problems—with the practical magic of databases. In The Manga Guide to Databases, Tico the fairy teaches the Princess how to simplify her data management. We follow along as they design a relational database, understand the entity-relationship model, perform basic database operations, and delve into more advanced topics. Once the Princess is familiar with transactions and basic SQL statements, she can keep her data timely and accurate for the entire kingdom. Finally, Tico explains ways to make the database more efficient and secure, and they discuss methods for concurrency and replication. Examples and exercises (with answer keys) help you learn, and an appendix of frequently used SQL statements gives the tools you need to create and maintain full-featured databases. (Of course, it wouldn't be a royal kingdom without some drama, so read on to find out who gets the girl—the arrogant prince or the humble servant.) This EduManga book is a translation of a bestselling series in Japan, co-published with Ohmsha, Ltd., of Tokyo, Japan.

Modern Enterprise Data Pipelines

Download Modern Enterprise Data Pipelines PDF Online Free

Author :
Publisher :
ISBN 13 : 9781737362302
Total Pages : pages
Book Rating : 4.3/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Modern Enterprise Data Pipelines by : Mike Bachman

Download or read book Modern Enterprise Data Pipelines written by Mike Bachman and published by . This book was released on 2021-06-25 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A Dell Technologies perspective on today's data landscape and the key ingredients for planning a modern, distributed data pipeline for your multicloud data-driven enterprise

Modern Data Protection

Download Modern Data Protection PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 9781492094050
Total Pages : 450 pages
Book Rating : 4.0/5 (94 download)

DOWNLOAD NOW!


Book Synopsis Modern Data Protection by : W. Curtis Preston

Download or read book Modern Data Protection written by W. Curtis Preston and published by O'Reilly Media. This book was released on 2021-06-30 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: Give your organization the data protection it deserves, without the uncertainty and cost overruns experienced by your predecessors or other companies. System and network administrators today have their work cut out for them to protect physical and virtual machines in the data center and the cloud, mobile devices including laptops and tablets, SaaS services like Microsoft 365, Google Workspace, and Salesforce, and any persistent data created by Kubernetes and container workloads. To help you navigate the breadth and depth of this challenge, this book presents several solutions so you can determine which one is right for your company. You'll learn the unique requirements that each workload presents, then explore various categories of commercial backup hardware, software, and services available to protect these data sources, including the advantages and disadvantages of each approach. Learn the workload types that your organization should be backing up Explore the hardware, software, and services you can use to back up your systems Understand what's wrong with your current data protection system Pair your backed-up workloads to the appropriate backup system Learn the adjustments you need to make to make your backups better, without wasting money

The Self-Service Data Roadmap

Download The Self-Service Data Roadmap PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492075205
Total Pages : 297 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis The Self-Service Data Roadmap by : Sandeep Uttamchandani

Download or read book The Self-Service Data Roadmap written by Sandeep Uttamchandani and published by "O'Reilly Media, Inc.". This book was released on 2020-09-10 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data-driven insights are a key competitive advantage for any industry today, but deriving insights from raw data can still take days or weeks. Most organizations can’t scale data science teams fast enough to keep up with the growing amounts of data to transform. What’s the answer? Self-service data. With this practical book, data engineers, data scientists, and team managers will learn how to build a self-service data science platform that helps anyone in your organization extract insights from data. Sandeep Uttamchandani provides a scorecard to track and address bottlenecks that slow down time to insight across data discovery, transformation, processing, and production. This book bridges the gap between data scientists bottlenecked by engineering realities and data engineers unclear about ways to make self-service work. Build a self-service portal to support data discovery, quality, lineage, and governance Select the best approach for each self-service capability using open source cloud technologies Tailor self-service for the people, processes, and technology maturity of your data platform Implement capabilities to democratize data and reduce time to insight Scale your self-service portal to support a large number of users within your organization

Designing Cloud Data Platforms

Download Designing Cloud Data Platforms PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1617296449
Total Pages : 334 pages
Book Rating : 4.6/5 (172 download)

DOWNLOAD NOW!


Book Synopsis Designing Cloud Data Platforms by : Danil Zburivsky

Download or read book Designing Cloud Data Platforms written by Danil Zburivsky and published by Simon and Schuster. This book was released on 2021-04-20 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Centralized data warehouses, the long-time defacto standard for housing data for analytics, are rapidly giving way to multi-faceted cloud data platforms. Companies that embrace modern cloud data platforms benefit from an integrated view of their business using all of their data and can take advantage of advanced analytic practices to drive predictions and as yet unimagined data services. Designing Cloud Data Platforms is an hands-on guide to envisioning and designing a modern scalable data platform that takes full advantage of the flexibility of the cloud. As you read, you''ll learn the core components of a cloud data platform design, along with the role of key technologies like Spark and Kafka Streams. You''ll also explore setting up processes to manage cloud-based data, keep it secure, and using advanced analytic and BI tools to analyse it. about the technology Access to affordable, dependable, serverless cloud services has revolutionized the way organizations can approach data management, and companies both big and small are raring to migrate to the cloud. But without a properly designed data platform, data in the cloud can remain just as siloed and inaccessible as it is today for most organizations. Designing Cloud Data Platforms lays out the principles of a well-designed platform that uses the scalable resources of the public cloud to manage all of an organization''s data, and present it as useful business insights. about the book In Designing Cloud Data Platforms, you''ll learn how to integrate data from multiple sources into a single, cloud-based, modern data platform. Drawing on their real-world experiences designing cloud data platforms for dozens of organizations, cloud data experts Danil Zburivsky and Lynda Partner take you through a six-layer approach to creating cloud data platforms that maximizes flexibility and manageability and reduces costs. Starting with foundational principles, you''ll learn how to get data into your platform from different databases, files, and APIs, the essential practices for organizing and processing that raw data, and how to best take advantage of the services offered by major cloud vendors. As you progress past the basics you''ll take a deep dive into advanced topics to get the most out of your data platform, including real-time data management, machine learning analytics, schema management, and more. what''s inside The tools of different public cloud for implementing data platforms Best practices for managing structured and unstructured data sets Machine learning tools that can be used on top of the cloud Cost optimization techniques about the reader For data professionals familiar with the basics of cloud computing and distributed data processing systems like Hadoop and Spark. about the authors Danil Zburivsky has over 10 years experience designing and supporting large-scale data infrastructure for enterprises across the globe. Lynda Partner is the VP of Analytics-as-a-Service at Pythian, and has been on the business side of data for over 20 years.