Advanced Models of Neural Networks

Download Advanced Models of Neural Networks PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3662437643
Total Pages : 296 pages
Book Rating : 4.6/5 (624 download)

DOWNLOAD NOW!


Book Synopsis Advanced Models of Neural Networks by : Gerasimos G. Rigatos

Download or read book Advanced Models of Neural Networks written by Gerasimos G. Rigatos and published by Springer. This book was released on 2014-08-27 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a complete study on neural structures exhibiting nonlinear and stochastic dynamics, elaborating on neural dynamics by introducing advanced models of neural networks. It overviews the main findings in the modelling of neural dynamics in terms of electrical circuits and examines their stability properties with the use of dynamical systems theory. It is suitable for researchers and postgraduate students engaged with neural networks and dynamical systems theory.

Neural Networks: Computational Models and Applications

Download Neural Networks: Computational Models and Applications PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540692258
Total Pages : 310 pages
Book Rating : 4.5/5 (46 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks: Computational Models and Applications by : Huajin Tang

Download or read book Neural Networks: Computational Models and Applications written by Huajin Tang and published by Springer Science & Business Media. This book was released on 2007-03-12 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural Networks: Computational Models and Applications presents important theoretical and practical issues in neural networks, including the learning algorithms of feed-forward neural networks, various dynamical properties of recurrent neural networks, winner-take-all networks and their applications in broad manifolds of computational intelligence: pattern recognition, uniform approximation, constrained optimization, NP-hard problems, and image segmentation. The book offers a compact, insightful understanding of the broad and rapidly growing neural networks domain.

Neural Network Models

Download Neural Network Models PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540761297
Total Pages : 76 pages
Book Rating : 4.7/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Neural Network Models by : Philippe de Wilde

Download or read book Neural Network Models written by Philippe de Wilde and published by Springer Science & Business Media. This book was released on 1997-05-30 with total page 76 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing an in-depth treatment of neural network models, this volume explains and proves the main results in a clear and accessible way. It presents the essential principles of nonlinear dynamics as derived from neurobiology, and investigates the stability, convergence behaviour and capacity of networks.

Artificial Higher Order Neural Networks for Modeling and Simulation

Download Artificial Higher Order Neural Networks for Modeling and Simulation PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1466621761
Total Pages : 455 pages
Book Rating : 4.4/5 (666 download)

DOWNLOAD NOW!


Book Synopsis Artificial Higher Order Neural Networks for Modeling and Simulation by : Zhang, Ming

Download or read book Artificial Higher Order Neural Networks for Modeling and Simulation written by Zhang, Ming and published by IGI Global. This book was released on 2012-10-31 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book introduces Higher Order Neural Networks (HONNs) to computer scientists and computer engineers as an open box neural networks tool when compared to traditional artificial neural networks"--Provided by publisher.

Model Neural Networks and Behavior

Download Model Neural Networks and Behavior PDF Online Free

Author :
Publisher :
ISBN 13 : 9781475758597
Total Pages : 576 pages
Book Rating : 4.7/5 (585 download)

DOWNLOAD NOW!


Book Synopsis Model Neural Networks and Behavior by : Allen Selverston

Download or read book Model Neural Networks and Behavior written by Allen Selverston and published by . This book was released on 2014-01-15 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Forecasting: principles and practice

Download Forecasting: principles and practice PDF Online Free

Author :
Publisher : OTexts
ISBN 13 : 0987507117
Total Pages : 380 pages
Book Rating : 4.9/5 (875 download)

DOWNLOAD NOW!


Book Synopsis Forecasting: principles and practice by : Rob J Hyndman

Download or read book Forecasting: principles and practice written by Rob J Hyndman and published by OTexts. This book was released on 2018-05-08 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.

Artificial Neural Networks

Download Artificial Neural Networks PDF Online Free

Author :
Publisher : BoD – Books on Demand
ISBN 13 : 9535127047
Total Pages : 416 pages
Book Rating : 4.5/5 (351 download)

DOWNLOAD NOW!


Book Synopsis Artificial Neural Networks by : Joao Luis Garcia Rosa

Download or read book Artificial Neural Networks written by Joao Luis Garcia Rosa and published by BoD – Books on Demand. This book was released on 2016-10-19 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: The idea of simulating the brain was the goal of many pioneering works in Artificial Intelligence. The brain has been seen as a neural network, or a set of nodes, or neurons, connected by communication lines. Currently, there has been increasing interest in the use of neural network models. This book contains chapters on basic concepts of artificial neural networks, recent connectionist architectures and several successful applications in various fields of knowledge, from assisted speech therapy to remote sensing of hydrological parameters, from fabric defect classification to application in civil engineering. This is a current book on Artificial Neural Networks and Applications, bringing recent advances in the area to the reader interested in this always-evolving machine learning technique.

Physical Models of Neural Networks

Download Physical Models of Neural Networks PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9789810200121
Total Pages : 158 pages
Book Rating : 4.2/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Physical Models of Neural Networks by : Tam s Geszti

Download or read book Physical Models of Neural Networks written by Tam s Geszti and published by World Scientific. This book was released on 1990 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: This lecture note volume is mainly about the recent development that connected neural network modeling to the theoretical physics of disordered systems. It gives a detailed account of the (Little-) Hopfield model and its ramifications concerning non-orthogonal and hierarchical patterns, short-term memory, time sequences, and dynamical learning algorithms. It also offers a brief introduction to computation in layered feed-forward networks, trained by back-propagation and other methods. Kohonen's self-organizing feature map algorithm is discussed in detail as a physical ordering process. The book offers a minimum complexity guide through the often cumbersome theories developed around the Hopfield model. The physical model for the Kohonen self-organizing feature map algorithm is new, enabling the reader to better understand how and why this fascinating and somewhat mysterious tool works.

Interpretable Machine Learning

Download Interpretable Machine Learning PDF Online Free

Author :
Publisher : Lulu.com
ISBN 13 : 0244768528
Total Pages : 320 pages
Book Rating : 4.2/5 (447 download)

DOWNLOAD NOW!


Book Synopsis Interpretable Machine Learning by : Christoph Molnar

Download or read book Interpretable Machine Learning written by Christoph Molnar and published by Lulu.com. This book was released on 2020 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Fundamentals of Neural Network Modeling

Download Fundamentals of Neural Network Modeling PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 9780262161756
Total Pages : 450 pages
Book Rating : 4.1/5 (617 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals of Neural Network Modeling by : Randolph W. Parks

Download or read book Fundamentals of Neural Network Modeling written by Randolph W. Parks and published by MIT Press. This book was released on 1998 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides an introduction to the neural network modeling of complex cognitive and neuropsychological processes. Over the past few years, computer modeling has become more prevalent in the clinical sciences as an alternative to traditional symbol-processing models. This book provides an introduction to the neural network modeling of complex cognitive and neuropsychological processes. It is intended to make the neural network approach accessible to practicing neuropsychologists, psychologists, neurologists, and psychiatrists. It will also be a useful resource for computer scientists, mathematicians, and interdisciplinary cognitive neuroscientists. The editors (in their introduction) and contributors explain the basic concepts behind modeling and avoid the use of high-level mathematics. The book is divided into four parts. Part I provides an extensive but basic overview of neural network modeling, including its history, present, and future trends. It also includes chapters on attention, memory, and primate studies. Part II discusses neural network models of behavioral states such as alcohol dependence, learned helplessness, depression, and waking and sleeping. Part III presents neural network models of neuropsychological tests such as the Wisconsin Card Sorting Task, the Tower of Hanoi, and the Stroop Test. Finally, part IV describes the application of neural network models to dementia: models of acetycholine and memory, verbal fluency, Parkinsons disease, and Alzheimer's disease. Contributors J. Wesson Ashford, Rajendra D. Badgaiyan, Jean P. Banquet, Yves Burnod, Nelson Butters, John Cardoso, Agnes S. Chan, Jean-Pierre Changeux, Kerry L. Coburn, Jonathan D. Cohen, Laurent Cohen, Jose L. Contreras-Vidal, Antonio R. Damasio, Hanna Damasio, Stanislas Dehaene, Martha J. Farah, Joaquin M. Fuster, Philippe Gaussier, Angelika Gissler, Dylan G. Harwood, Michael E. Hasselmo, J, Allan Hobson, Sam Leven, Daniel S. Levine, Debra L. Long, Roderick K. Mahurin, Raymond L. Ownby, Randolph W. Parks, Michael I. Posner, David P. Salmon, David Servan-Schreiber, Chantal E. Stern, Jeffrey P. Sutton, Lynette J. Tippett, Daniel Tranel, Bradley Wyble

Mastering Machine Learning Algorithms

Download Mastering Machine Learning Algorithms PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1788625900
Total Pages : 567 pages
Book Rating : 4.7/5 (886 download)

DOWNLOAD NOW!


Book Synopsis Mastering Machine Learning Algorithms by : Giuseppe Bonaccorso

Download or read book Mastering Machine Learning Algorithms written by Giuseppe Bonaccorso and published by Packt Publishing Ltd. This book was released on 2018-05-25 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore and master the most important algorithms for solving complex machine learning problems. Key Features Discover high-performing machine learning algorithms and understand how they work in depth. One-stop solution to mastering supervised, unsupervised, and semi-supervised machine learning algorithms and their implementation. Master concepts related to algorithm tuning, parameter optimization, and more Book Description Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn. You will also learn how to use Keras and TensorFlow to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need. What you will learn Explore how a ML model can be trained, optimized, and evaluated Understand how to create and learn static and dynamic probabilistic models Successfully cluster high-dimensional data and evaluate model accuracy Discover how artificial neural networks work and how to train, optimize, and validate them Work with Autoencoders and Generative Adversarial Networks Apply label spreading and propagation to large datasets Explore the most important Reinforcement Learning techniques Who this book is for This book is an ideal and relevant source of content for data science professionals who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model. A basic knowledge of machine learning is preferred to get the best out of this guide.

An Introduction to the Modeling of Neural Networks

Download An Introduction to the Modeling of Neural Networks PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521424875
Total Pages : 496 pages
Book Rating : 4.4/5 (248 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to the Modeling of Neural Networks by : Pierre Peretto

Download or read book An Introduction to the Modeling of Neural Networks written by Pierre Peretto and published by Cambridge University Press. This book was released on 1992-10-29 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a beginning graduate-level introduction to neural networks which is divided into four parts.

Neural Networks

Download Neural Networks PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642577601
Total Pages : 340 pages
Book Rating : 4.6/5 (425 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks by : Berndt Müller

Download or read book Neural Networks written by Berndt Müller and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural Networks presents concepts of neural-network models and techniques of parallel distributed processing in a three-step approach: - A brief overview of the neural structure of the brain and the history of neural-network modeling introduces to associative memory, preceptrons, feature-sensitive networks, learning strategies, and practical applications. - The second part covers subjects like statistical physics of spin glasses, the mean-field theory of the Hopfield model, and the "space of interactions" approach to the storage capacity of neural networks. - The final part discusses nine programs with practical demonstrations of neural-network models. The software and source code in C are on a 3 1/2" MS-DOS diskette can be run with Microsoft, Borland, Turbo-C, or compatible compilers.

Artificial Neural Network Modelling

Download Artificial Neural Network Modelling PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319284959
Total Pages : 468 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Artificial Neural Network Modelling by : Subana Shanmuganathan

Download or read book Artificial Neural Network Modelling written by Subana Shanmuganathan and published by Springer. This book was released on 2016-02-03 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling.

Models of Neural Networks IV

Download Models of Neural Networks IV PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387217037
Total Pages : 424 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Models of Neural Networks IV by : J. Leo van Hemmen

Download or read book Models of Neural Networks IV written by J. Leo van Hemmen and published by Springer Science & Business Media. This book was released on 2012-11-09 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume, with chapters by leading researchers in the field, is devoted to early vision and attention, that is, to the first stages of visual information processing. This state-of-the-art look at biological neural networks spans the many subfields, such as computational and experimental neuroscience; anatomy and physiology; visual information processing and scene segmentation; perception at illusory contours; control of visual attention; and paradigms for computing with spiking neurons.

A Comprehensive Guide to Neural Network Modeling

Download A Comprehensive Guide to Neural Network Modeling PDF Online Free

Author :
Publisher : Nova Science Publishers
ISBN 13 : 9781536185423
Total Pages : 172 pages
Book Rating : 4.1/5 (854 download)

DOWNLOAD NOW!


Book Synopsis A Comprehensive Guide to Neural Network Modeling by : Steffen Skaar

Download or read book A Comprehensive Guide to Neural Network Modeling written by Steffen Skaar and published by Nova Science Publishers. This book was released on 2020-10-26 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: As artificial neural networks have been gaining importance in the field of engineering, this compilation aims to review the scientific literature regarding the use of artificial neural networks for the modelling and optimization of food drying processes. The applications of artificial neural networks in food engineering are presented, particularly focusing on control, monitoring and modeling of industrial food processes.The authors emphasize the main achievements of artificial neural network modeling in recent years in the field of quantitative structure-activity relationships and quantitative structure-retention relationships.In the closing study, artificial intelligence techniques are applied to river water quality data and artificial intelligence models are developed in an effort to contribute to the reduction of the cost of future on-line measurement stations.

Neural Modeling and Neural Networks

Download Neural Modeling and Neural Networks PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 1483287904
Total Pages : 363 pages
Book Rating : 4.4/5 (832 download)

DOWNLOAD NOW!


Book Synopsis Neural Modeling and Neural Networks by : F. Ventriglia

Download or read book Neural Modeling and Neural Networks written by F. Ventriglia and published by Elsevier. This book was released on 2013-10-22 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research in neural modeling and neural networks has escalated dramatically in the last decade, acquiring along the way terms and concepts, such as learning, memory, perception, recognition, which are the basis of neuropsychology. Nevertheless, for many, neural modeling remains controversial in its purported ability to describe brain activity. The difficulties in "modeling" are various, but arise principally in identifying those elements that are fundamental for the expression (and description) of superior neural activity. This is complicated by our incomplete knowledge of neural structures and functions, at the cellular and population levels. The first step towards enhanced appreciation of the value of neural modeling and neural networks is to be aware of what has been achieved in this multidisciplinary field of research. This book sets out to create such awareness. Leading experts develop in twelve chapters the key topics of neural structures and functions, dynamics of single neurons, oscillations in groups of neurons, randomness and chaos in neural activity, (statistical) dynamics of neural networks, learning, memory and pattern recognition.