Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Modelling Spatial Processes
Download Modelling Spatial Processes full books in PDF, epub, and Kindle. Read online Modelling Spatial Processes ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Spatial Processes by : Andrew David Cliff
Download or read book Spatial Processes written by Andrew David Cliff and published by Taylor & Francis. This book was released on 1981 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Stochastic Geometry, Spatial Statistics and Random Fields by : Volker Schmidt
Download or read book Stochastic Geometry, Spatial Statistics and Random Fields written by Volker Schmidt and published by Springer. This book was released on 2014-10-24 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is an attempt to provide a graduate level introduction to various aspects of stochastic geometry, spatial statistics and random fields, with special emphasis placed on fundamental classes of models and algorithms as well as on their applications, e.g. in materials science, biology and genetics. This book has a strong focus on simulations and includes extensive codes in Matlab and R which are widely used in the mathematical community. It can be seen as a continuation of the recent volume 2068 of Lecture Notes in Mathematics, where other issues of stochastic geometry, spatial statistics and random fields were considered with a focus on asymptotic methods.
Book Synopsis Statistical Analysis and Modelling of Spatial Point Patterns by : Dr. Janine Illian
Download or read book Statistical Analysis and Modelling of Spatial Point Patterns written by Dr. Janine Illian and published by John Wiley & Sons. This book was released on 2008-04-15 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spatial point processes are mathematical models used to describe and analyse the geometrical structure of patterns formed by objects that are irregularly or randomly distributed in one-, two- or three-dimensional space. Examples include locations of trees in a forest, blood particles on a glass plate, galaxies in the universe, and particle centres in samples of material. Numerous aspects of the nature of a specific spatial point pattern may be described using the appropriate statistical methods. Statistical Analysis and Modelling of Spatial Point Patterns provides a practical guide to the use of these specialised methods. The application-oriented approach helps demonstrate the benefits of this increasingly popular branch of statistics to a broad audience. The book: Provides an introduction to spatial point patterns for researchers across numerous areas of application Adopts an extremely accessible style, allowing the non-statistician complete understanding Describes the process of extracting knowledge from the data, emphasising the marked point process Demonstrates the analysis of complex datasets, using applied examples from areas including biology, forestry, and materials science Features a supplementary website containing example datasets. Statistical Analysis and Modelling of Spatial Point Patterns is ideally suited for researchers in the many areas of application, including environmental statistics, ecology, physics, materials science, geostatistics, and biology. It is also suitable for students of statistics, mathematics, computer science, biology and geoinformatics.
Book Synopsis Spatial Simulation by : David O'Sullivan
Download or read book Spatial Simulation written by David O'Sullivan and published by John Wiley & Sons. This book was released on 2013-08-05 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: A ground-up approach to explaining dynamic spatial modelling for an interdisciplinary audience. Across broad areas of the environmental and social sciences, simulation models are an important way to study systems inaccessible to scientific experimental and observational methods, and also an essential complement to those more conventional approaches. The contemporary research literature is teeming with abstract simulation models whose presentation is mathematically demanding and requires a high level of knowledge of quantitative and computational methods and approaches. Furthermore, simulation models designed to represent specific systems and phenomena are often complicated, and, as a result, difficult to reconstruct from their descriptions in the literature. This book aims to provide a practical and accessible account of dynamic spatial modelling, while also equipping readers with a sound conceptual foundation in the subject, and a useful introduction to the wide-ranging literature. Spatial Simulation: Exploring Pattern and Process is organised around the idea that a small number of spatial processes underlie the wide variety of dynamic spatial models. Its central focus on three ‘building-blocks’ of dynamic spatial models – forces of attraction and segregation, individual mobile entities, and processes of spread – guides the reader to an understanding of the basis of many of the complicated models found in the research literature. The three building block models are presented in their simplest form and are progressively elaborated and related to real world process that can be represented using them. Introductory chapters cover essential background topics, particularly the relationships between pattern, process and spatiotemporal scale. Additional chapters consider how time and space can be represented in more complicated models, and methods for the analysis and evaluation of models. Finally, the three building block models are woven together in a more elaborate example to show how a complicated model can be assembled from relatively simple components. To aid understanding, more than 50 specific models described in the book are available online at patternandprocess.org for exploration in the freely available Netlogo platform. This book encourages readers to develop intuition for the abstract types of model that are likely to be appropriate for application in any specific context. Spatial Simulation: Exploring Pattern and Process will be of interest to undergraduate and graduate students taking courses in environmental, social, ecological and geographical disciplines. Researchers and professionals who require a non-specialist introduction will also find this book an invaluable guide to dynamic spatial simulation.
Book Synopsis Spatial Econometrics: Methods and Models by : L. Anselin
Download or read book Spatial Econometrics: Methods and Models written by L. Anselin and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spatial econometrics deals with spatial dependence and spatial heterogeneity, critical aspects of the data used by regional scientists. These characteristics may cause standard econometric techniques to become inappropriate. In this book, I combine several recent research results to construct a comprehensive approach to the incorporation of spatial effects in econometrics. My primary focus is to demonstrate how these spatial effects can be considered as special cases of general frameworks in standard econometrics, and to outline how they necessitate a separate set of methods and techniques, encompassed within the field of spatial econometrics. My viewpoint differs from that taken in the discussion of spatial autocorrelation in spatial statistics - e.g., most recently by Cliff and Ord (1981) and Upton and Fingleton (1985) - in that I am mostly concerned with the relevance of spatial effects on model specification, estimation and other inference, in what I caIl a model-driven approach, as opposed to a data-driven approach in spatial statistics. I attempt to combine a rigorous econometric perspective with a comprehensive treatment of methodological issues in spatial analysis.
Book Synopsis Statistical Inference for Spatial Processes by : B. D. Ripley
Download or read book Statistical Inference for Spatial Processes written by B. D. Ripley and published by Cambridge University Press. This book was released on 1988 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of spatial processes and their applications is an important topic in statistics and finds wide application particularly in computer vision and image processing. This book is devoted to statistical inference in spatial statistics and is intended for specialists needing an introduction to the subject and to its applications. One of the themes of the book is the demonstration of how these techniques give new insights into classical procedures (including new examples in likelihood theory) and newer statistical paradigms such as Monte-Carlo inference and pseudo-likelihood. Professor Ripley also stresses the importance of edge effects and of lack of a unique asymptotic setting in spatial problems. Throughout, the author discusses the foundational issues posed and the difficulties, both computational and philosophical, which arise. The final chapters consider image restoration and segmentation methods and the averaging and summarising of images. Thus, the book will find wide appeal to researchers in computer vision, image processing, and those applying microscopy in biology, geology and materials science, as well as to statisticians interested in the foundations of their discipline.
Book Synopsis Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA by : Elias T. Krainski
Download or read book Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA written by Elias T. Krainski and published by CRC Press. This book was released on 2018-12-07 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling spatial and spatio-temporal continuous processes is an important and challenging problem in spatial statistics. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA describes in detail the stochastic partial differential equations (SPDE) approach for modeling continuous spatial processes with a Matérn covariance, which has been implemented using the integrated nested Laplace approximation (INLA) in the R-INLA package. Key concepts about modeling spatial processes and the SPDE approach are explained with examples using simulated data and real applications. This book has been authored by leading experts in spatial statistics, including the main developers of the INLA and SPDE methodologies and the R-INLA package. It also includes a wide range of applications: * Spatial and spatio-temporal models for continuous outcomes * Analysis of spatial and spatio-temporal point patterns * Coregionalization spatial and spatio-temporal models * Measurement error spatial models * Modeling preferential sampling * Spatial and spatio-temporal models with physical barriers * Survival analysis with spatial effects * Dynamic space-time regression * Spatial and spatio-temporal models for extremes * Hurdle models with spatial effects * Penalized Complexity priors for spatial models All the examples in the book are fully reproducible. Further information about this book, as well as the R code and datasets used, is available from the book website at http://www.r-inla.org/spde-book. The tools described in this book will be useful to researchers in many fields such as biostatistics, spatial statistics, environmental sciences, epidemiology, ecology and others. Graduate and Ph.D. students will also find this book and associated files a valuable resource to learn INLA and the SPDE approach for spatial modeling.
Book Synopsis Modelling Spatial Processes by : Michael Tiefelsdorf
Download or read book Modelling Spatial Processes written by Michael Tiefelsdorf and published by Springer. This book was released on 2006-04-11 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: A novel methodology is put forward in this book, which empowers researchers to investigate and identify potential spatial processes among a set of regions. Spatial processes and their underlying functional spatial relationships are commonly observed in the geosciences and related disciplines. Examples are spatially autocorrelated random variables manifesting themselves in distinct global patterns as well as local clusters and hot spots, or spatial interaction leading to stochastic ties among the regions. An example from observational epidemiology demonstrates the flexibility of Moran's approach by analyzing the spatial distribution of cancer data from several perspectives. Recent advances in computing technology, computer algorithms, statistical techniques and global and local spatial patterns by means of Moran's I feasability. Moran's I is an extremely versatile tool for exploring and analyzing spatial data and testing spatial hypotheses.
Book Synopsis Case Studies in Spatial Point Process Modeling by : Adrian Baddeley
Download or read book Case Studies in Spatial Point Process Modeling written by Adrian Baddeley and published by Springer Science & Business Media. This book was released on 2006-03-03 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Point process statistics is successfully used in fields such as material science, human epidemiology, social sciences, animal epidemiology, biology, and seismology. Its further application depends greatly on good software and instructive case studies that show the way to successful work. This book satisfies this need by a presentation of the spatstat package and many statistical examples. Researchers, spatial statisticians and scientists from biology, geosciences, materials sciences and other fields will use this book as a helpful guide to the application of point process statistics. No other book presents so many well-founded point process case studies. From the reviews: "For those interested in analyzing their spatial data, the wide variatey of examples and approaches here give a good idea of the possibilities and suggest reasonable paths to explore." Michael Sherman for the Journal of the American Statistical Association, December 2006
Book Synopsis Spatial Modeling in GIS and R for Earth and Environmental Sciences by : Hamid Reza Pourghasemi
Download or read book Spatial Modeling in GIS and R for Earth and Environmental Sciences written by Hamid Reza Pourghasemi and published by Elsevier. This book was released on 2019-01-18 with total page 800 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spatial Modeling in GIS and R for Earth and Environmental Sciences offers an integrated approach to spatial modelling using both GIS and R. Given the importance of Geographical Information Systems and geostatistics across a variety of applications in Earth and Environmental Science, a clear link between GIS and open source software is essential for the study of spatial objects or phenomena that occur in the real world and facilitate problem-solving. Organized into clear sections on applications and using case studies, the book helps researchers to more quickly understand GIS data and formulate more complex conclusions. The book is the first reference to provide methods and applications for combining the use of R and GIS in modeling spatial processes. It is an essential tool for students and researchers in earth and environmental science, especially those looking to better utilize GIS and spatial modeling. - Offers a clear, interdisciplinary guide to serve researchers in a variety of fields, including hazards, land surveying, remote sensing, cartography, geophysics, geology, natural resources, environment and geography - Provides an overview, methods and case studies for each application - Expresses concepts and methods at an appropriate level for both students and new users to learn by example
Book Synopsis Spatial Analysis and Modeling in Geographical Transformation Process by : Yuji Murayama
Download or read book Spatial Analysis and Modeling in Geographical Transformation Process written by Yuji Murayama and published by Springer Science & Business Media. This book was released on 2011-02-26 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: Currently, spatial analysis is becoming more important than ever because enormous volumes of spatial data are available from different sources, such as GPS, Remote Sensing, and others. This book deals with spatial analysis and modelling. It provides a comprehensive discussion of spatial analysis, methods, and approaches related to human settlements and associated environment. Key contributions with empirical case studies from Iran, Philippines, Vietnam, Thailand, Nepal, and Japan that apply spatial analysis including autocorrelation, fuzzy, voronoi, cellular automata, analytic hierarchy process, artificial neural network, spatial metrics, spatial statistics, regression, and remote sensing mapping techniques are compiled comprehensively. The core value of this book is a wide variety of results with state of the art discussion including empirical case studies. It provides a milestone reference to students, researchers, planners, and other practitioners dealing the spatial problems on urban and regional issues. We are pleased to announce that this book has been presented with the 2011 publishing award from the GIS Association of Japan. We would like to congratulate the authors!
Book Synopsis Statistical Inference and Simulation for Spatial Point Processes by : Jesper Moller
Download or read book Statistical Inference and Simulation for Spatial Point Processes written by Jesper Moller and published by CRC Press. This book was released on 2003-09-25 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spatial point processes play a fundamental role in spatial statistics and today they are an active area of research with many new applications. Although other published works address different aspects of spatial point processes, most of the classical literature deals only with nonparametric methods, and a thorough treatment of the theory and applications of simulation-based inference is difficult to find. Written by researchers at the top of the field, this book collects and unifies recent theoretical advances and examples of applications. The authors examine Markov chain Monte Carlo algorithms and explore one of the most important recent developments in MCMC: perfect simulation procedures.
Book Synopsis Theory of Spatial Statistics by : M.N.M. van Lieshout
Download or read book Theory of Spatial Statistics written by M.N.M. van Lieshout and published by CRC Press. This book was released on 2019-03-19 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theory of Spatial Statistics: A Concise Introduction presents the most important models used in spatial statistics, including random fields and point processes, from a rigorous mathematical point of view and shows how to carry out statistical inference. It contains full proofs, real-life examples and theoretical exercises. Solutions to the latter are available in an appendix. Assuming maturity in probability and statistics, these concise lecture notes are self-contained and cover enough material for a semester course. They may also serve as a reference book for researchers. Features * Presents the mathematical foundations of spatial statistics. * Contains worked examples from mining, disease mapping, forestry, soil and environmental science, and criminology. * Gives pointers to the literature to facilitate further study. * Provides example code in R to encourage the student to experiment. * Offers exercises and their solutions to test and deepen understanding. The book is suitable for postgraduate and advanced undergraduate students in mathematics and statistics.
Book Synopsis Spatial Cluster Modelling by : Andrew B. Lawson
Download or read book Spatial Cluster Modelling written by Andrew B. Lawson and published by CRC Press. This book was released on 2002-05-16 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research has generated a number of advances in methods for spatial cluster modelling in recent years, particularly in the area of Bayesian cluster modelling. Along with these advances has come an explosion of interest in the potential applications of this work, especially in epidemiology and genome research. In one integrated volume, this b
Book Synopsis Spatial Patterns in Catchment Hydrology by : Rodger Grayson
Download or read book Spatial Patterns in Catchment Hydrology written by Rodger Grayson and published by CUP Archive. This book was released on 2001-08-06 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes use of observed patterns in understanding and modelling hydrological response, for researchers and graduate students.
Book Synopsis Modelling Spatial Processes by : Michael Tiefelsdorf
Download or read book Modelling Spatial Processes written by Michael Tiefelsdorf and published by Springer. This book was released on 1999-11-18 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: A novel methodology is put forward in this book, which empowers researchers to investigate and identify potential spatial processes among a set of regions. Spatial processes and their underlying functional spatial relationships are commonly observed in the geosciences and related disciplines. Examples are spatially autocorrelated random variables manifesting themselves in distinct global patterns as well as local clusters and hot spots, or spatial interaction leading to stochastic ties among the regions. An example from observational epidemiology demonstrates the flexibility of Moran's approach by analyzing the spatial distribution of cancer data from several perspectives. Recent advances in computing technology, computer algorithms, statistical techniques and global and local spatial patterns by means of Moran's I feasability. Moran's I is an extremely versatile tool for exploring and analyzing spatial data and testing spatial hypotheses.
Book Synopsis Modelling Longitudinal and Spatially Correlated Data by : Timothy G. Gregoire
Download or read book Modelling Longitudinal and Spatially Correlated Data written by Timothy G. Gregoire and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Correlated data arise in numerous contexts across a wide spectrum of subject-matter disciplines. Modeling such data present special challenges and opportunities that have received increasing scrutiny by the statistical community in recent years. In October 1996 a group of 210 statisticians and other scientists assembled on the small island of Nantucket, U. S. A. , to present and discuss new developments relating to Modelling Longitudinal and Spatially Correlated Data: Methods, Applications, and Future Direc tions. Its purpose was to provide a cross-disciplinary forum to explore the commonalities and meaningful differences in the source and treatment of such data. This volume is a compilation of some of the important invited and volunteered presentations made during that conference. The three days and evenings of oral and displayed presentations were arranged into six broad thematic areas. The session themes, the invited speakers and the topics they addressed were as follows: • Generalized Linear Models: Peter McCullagh-"Residual Likelihood in Linear and Generalized Linear Models" • Longitudinal Data Analysis: Nan Laird-"Using the General Linear Mixed Model to Analyze Unbalanced Repeated Measures and Longi tudinal Data" • Spatio---Temporal Processes: David R. Brillinger-"Statistical Analy sis of the Tracks of Moving Particles" • Spatial Data Analysis: Noel A. Cressie-"Statistical Models for Lat tice Data" • Modelling Messy Data: Raymond J. Carroll-"Some Results on Gen eralized Linear Mixed Models with Measurement Error in Covariates" • Future Directions: Peter J.