Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Modeling Identification Of Dynamic Systems
Download Modeling Identification Of Dynamic Systems full books in PDF, epub, and Kindle. Read online Modeling Identification Of Dynamic Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Identification of Dynamic Systems by : Rolf Isermann
Download or read book Identification of Dynamic Systems written by Rolf Isermann and published by Springer. This book was released on 2011-04-08 with total page 705 pages. Available in PDF, EPUB and Kindle. Book excerpt: Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators up to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book. Among others, the book covers the following subjects: determination of the non-parametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.
Book Synopsis Modeling, Identification and Simulation of Dynamical Systems by : P. P. J. van den Bosch
Download or read book Modeling, Identification and Simulation of Dynamical Systems written by P. P. J. van den Bosch and published by CRC Press. This book was released on 2020-12-17 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an in-depth introduction to the areas of modeling, identification, simulation, and optimization. These scientific topics play an increasingly dominant part in many engineering areas such as electrotechnology, mechanical engineering, aerospace, and physics. This book represents a unique and concise treatment of the mutual interactions among these topics. Techniques for solving general nonlinear optimization problems as they arise in identification and many synthesis and design methods are detailed. The main points in deriving mathematical models via prior knowledge concerning the physics describing a system are emphasized. Several chapters discuss the identification of black-box models. Simulation is introduced as a numerical tool for calculating time responses of almost any mathematical model. The last chapter covers optimization, a generally applicable tool for formulating and solving many engineering problems.
Book Synopsis Modeling & Identification of Dynamic Systems by : Lennart Ljung
Download or read book Modeling & Identification of Dynamic Systems written by Lennart Ljung and published by . This book was released on 2016 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Modeling of Dynamic Systems by : Lennart Ljung
Download or read book Modeling of Dynamic Systems written by Lennart Ljung and published by Prentice Hall. This book was released on 1994 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by a recognized authority in the field of identification and control, this book draws together into a single volume the important aspects of system identification AND physical modelling. KEY TOPICS: Explores techniques used to construct mathematical models of systems based on knowledge from physics, chemistry, biology, etc. (e.g., techniques with so called bond-graphs, as well those which use computer algebra for the modeling work). Explains system identification techniques used to infer knowledge about the behavior of dynamic systems based on observations of the various input and output signals that are available for measurement. Shows how both types of techniques need to be applied in any given practical modeling situation. Considers applications, primarily simulation. MARKET: For practicing engineers who are faced with problems of modeling.
Book Synopsis Modelling and Control of Dynamic Systems Using Gaussian Process Models by : Juš Kocijan
Download or read book Modelling and Control of Dynamic Systems Using Gaussian Process Models written by Juš Kocijan and published by Springer. This book was released on 2015-11-21 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph opens up new horizons for engineers and researchers in academia and in industry dealing with or interested in new developments in the field of system identification and control. It emphasizes guidelines for working solutions and practical advice for their implementation rather than the theoretical background of Gaussian process (GP) models. The book demonstrates the potential of this recent development in probabilistic machine-learning methods and gives the reader an intuitive understanding of the topic. The current state of the art is treated along with possible future directions for research. Systems control design relies on mathematical models and these may be developed from measurement data. This process of system identification, when based on GP models, can play an integral part of control design in data-based control and its description as such is an essential aspect of the text. The background of GP regression is introduced first with system identification and incorporation of prior knowledge then leading into full-blown control. The book is illustrated by extensive use of examples, line drawings, and graphical presentation of computer-simulation results and plant measurements. The research results presented are applied in real-life case studies drawn from successful applications including: a gas–liquid separator control; urban-traffic signal modelling and reconstruction; and prediction of atmospheric ozone concentration. A MATLAB® toolbox, for identification and simulation of dynamic GP models is provided for download.
Book Synopsis Modelling and Parameter Estimation of Dynamic Systems by : J.R. Raol
Download or read book Modelling and Parameter Estimation of Dynamic Systems written by J.R. Raol and published by IET. This book was released on 2004-08-13 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a detailed examination of the estimation techniques and modeling problems. The theory is furnished with several illustrations and computer programs to promote better understanding of system modeling and parameter estimation.
Book Synopsis Data-Driven Science and Engineering by : Steven L. Brunton
Download or read book Data-Driven Science and Engineering written by Steven L. Brunton and published by Cambridge University Press. This book was released on 2022-05-05 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Book Synopsis Nonlinear system identification. 1. Nonlinear system parameter identification by : Robert Haber
Download or read book Nonlinear system identification. 1. Nonlinear system parameter identification written by Robert Haber and published by Springer Science & Business Media. This book was released on 1999 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Model-based Fault Diagnosis in Dynamic Systems Using Identification Techniques by : Silvio Simani
Download or read book Model-based Fault Diagnosis in Dynamic Systems Using Identification Techniques written by Silvio Simani and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Safety in industrial process and production plants is a concern of rising importance but because the control devices which are now exploited to improve the performance of industrial processes include both sophisticated digital system design techniques and complex hardware, there is a higher probability of failure. Control systems must include automatic supervision of closed-loop operation to detect and isolate malfunctions quickly. A promising method for solving this problem is "analytical redundancy", in which residual signals are obtained and an accurate model of the system mimics real process behaviour. If a fault occurs, the residual signal is used to diagnose and isolate the malfunction. This book focuses on model identification oriented to the analytical approach of fault diagnosis and identification covering: choice of model structure; parameter identification; residual generation; and fault diagnosis and isolation. Sample case studies are used to demonstrate the application of these techniques.
Book Synopsis System Identification by : Karel J. Keesman
Download or read book System Identification written by Karel J. Keesman and published by Springer Science & Business Media. This book was released on 2011-05-16 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: System Identification shows the student reader how to approach the system identification problem in a systematic fashion. The process is divided into three basic steps: experimental design and data collection; model structure selection and parameter estimation; and model validation, each of which is the subject of one or more parts of the text. Following an introduction on system theory, particularly in relation to model representation and model properties, the book contains four parts covering: • data-based identification – non-parametric methods for use when prior system knowledge is very limited; • time-invariant identification for systems with constant parameters; • time-varying systems identification, primarily with recursive estimation techniques; and • model validation methods. A fifth part, composed of appendices, covers the various aspects of the underlying mathematics needed to begin using the text. The book uses essentially semi-physical or gray-box modeling methods although data-based, transfer-function system descriptions are also introduced. The approach is problem-based rather than rigorously mathematical. The use of finite input–output data is demonstrated for frequency- and time-domain identification in static, dynamic, linear, nonlinear, time-invariant and time-varying systems. Simple examples are used to show readers how to perform and emulate the identification steps involved in various control design methods with more complex illustrations derived from real physical, chemical and biological applications being used to demonstrate the practical applicability of the methods described. End-of-chapter exercises (for which a downloadable instructors’ Solutions Manual is available from fill in URL here) will both help students to assimilate what they have learned and make the book suitable for self-tuition by practitioners looking to brush up on modern techniques. Graduate and final-year undergraduate students will find this text to be a practical and realistic course in system identification that can be used for assessing the processes of a variety of engineering disciplines. System Identification will help academic instructors teaching control-related to give their students a good understanding of identification methods that can be used in the real world without the encumbrance of undue mathematical detail.
Book Synopsis Modeling and Analysis of Dynamic Systems by : Ramin S. Esfandiari
Download or read book Modeling and Analysis of Dynamic Systems written by Ramin S. Esfandiari and published by CRC Press. This book was released on 2018-01-29 with total page 661 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling and Analysis of Dynamic Systems, Third Edition introduces MATLAB®, Simulink®, and SimscapeTM and then utilizes them to perform symbolic, graphical, numerical, and simulation tasks. Written for senior level courses/modules, the textbook meticulously covers techniques for modeling a variety of engineering systems, methods of response analysis, and introductions to mechanical vibration, and to basic control systems. These features combine to provide students with a thorough knowledge of the mathematical modeling and analysis of dynamic systems. The Third Edition now includes Case Studies, expanded coverage of system identification, and updates to the computational tools included.
Book Synopsis Nonlinear System Identification by : Oliver Nelles
Download or read book Nonlinear System Identification written by Oliver Nelles and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 785 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written from an engineering point of view, this book covers the most common and important approaches for the identification of nonlinear static and dynamic systems. The book also provides the reader with the necessary background on optimization techniques, making it fully self-contained. The new edition includes exercises.
Book Synopsis Mathematical and Computational Modeling and Simulation by : Dietmar Möller
Download or read book Mathematical and Computational Modeling and Simulation written by Dietmar Möller and published by Springer. This book was released on 2004 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical and Computational Modeling and Simulation - a highly multi-disciplinary field with ubiquitous applications in science and engineering - is one of the key enabling technologies of the 21st century. This book introduces the reader to the use of mathematical and computational modeling and simulation in order to develop an understanding of the solution characteristics of a broad class of real-world problems. The relevant basic and advanced methodologies are explained in detail, with special emphasis on ill-defined problems. Some 15 simulation systems are presented on the language and the logical level. Moreover, the reader can accumulate experience by studying a wide variety of case studies. The latter are briefly described within the book but their full versions as well as some simulation software demos are available on the Web. The book can be used for university courses of different levels as well as for self-study. Advanced sections are marked and can be skipped in a first reading or in undergraduate courses.
Book Synopsis Modelling and Simulation by : Louis G. Birta
Download or read book Modelling and Simulation written by Louis G. Birta and published by Springer Science & Business Media. This book was released on 2007-09-07 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a balanced and integrated presentation of modelling and simulation activity for both Discrete Event Dynamic Systems (DEDS) and Continuous Time Dynamic Systems (CYDS). The authors establish a clear distinction between the activity of modelling and that of simulation, maintaining this distinction throughout. The text offers a novel project-oriented approach for developing the modelling and simulation methodology, providing a solid basis for demonstrating the dependency of model structure and granularity on project goals. Comprehensive presentation of the verification and validation activities within the modelling and simulation context is also shown.
Book Synopsis Fractional-order Modeling and Control of Dynamic Systems by : Aleksei Tepljakov
Download or read book Fractional-order Modeling and Control of Dynamic Systems written by Aleksei Tepljakov and published by Springer. This book was released on 2017-02-08 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reports on an outstanding research devoted to modeling and control of dynamic systems using fractional-order calculus. It describes the development of model-based control design methods for systems described by fractional dynamic models. More than 300 years had passed since Newton and Leibniz developed a set of mathematical tools we now know as calculus. Ever since then the idea of non-integer derivatives and integrals, universally referred to as fractional calculus, has been of interest to many researchers. However, due to various issues, the usage of fractional-order models in real-life applications was limited. Advances in modern computer science made it possible to apply efficient numerical methods to the computation of fractional derivatives and integrals. This book describes novel methods developed by the author for fractional modeling and control, together with their successful application in real-world process control scenarios.
Book Synopsis Nonlinear System Identification by : Stephen A. Billings
Download or read book Nonlinear System Identification written by Stephen A. Billings and published by John Wiley & Sons. This book was released on 2013-07-29 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains describes a comprehensive framework for the identification and analysis of nonlinear dynamic systems in the time, frequency, and spatio-temporal domains. This book is written with an emphasis on making the algorithms accessible so that they can be applied and used in practice. Includes coverage of: The NARMAX (nonlinear autoregressive moving average with exogenous inputs) model The orthogonal least squares algorithm that allows models to be built term by term where the error reduction ratio reveals the percentage contribution of each model term Statistical and qualitative model validation methods that can be applied to any model class Generalised frequency response functions which provide significant insight into nonlinear behaviours A completely new class of filters that can move, split, spread, and focus energy The response spectrum map and the study of sub harmonic and severely nonlinear systems Algorithms that can track rapid time variation in both linear and nonlinear systems The important class of spatio-temporal systems that evolve over both space and time Many case study examples from modelling space weather, through identification of a model of the visual processing system of fruit flies, to tracking causality in EEG data are all included to demonstrate how easily the methods can be applied in practice and to show the insight that the algorithms reveal even for complex systems NARMAX algorithms provide a fundamentally different approach to nonlinear system identification and signal processing for nonlinear systems. NARMAX methods provide models that are transparent, which can easily be analysed, and which can be used to solve real problems. This book is intended for graduates, postgraduates and researchers in the sciences and engineering, and also for users from other fields who have collected data and who wish to identify models to help to understand the dynamics of their systems.
Book Synopsis Iterative Identification and Control by : P. Albertos Pérez
Download or read book Iterative Identification and Control written by P. Albertos Pérez and published by Springer Science & Business Media. This book was released on 2002-05-21 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: An exposition of the interplay between the modelling of dynamic systems and the design of feedback controllers based on these models. The authors of individual chapters are some of the most renowned and authoritative figures in the fields of system identification and control design.