Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Model Train Notebook
Download Model Train Notebook full books in PDF, epub, and Kindle. Read online Model Train Notebook ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Track Planning for Realistic Operation by : John H. Armstrong
Download or read book Track Planning for Realistic Operation written by John H. Armstrong and published by Kalmbach Publishing, Co.. This book was released on 1998 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covers freight and passenger operations, route design, and contemporary railroading operations. The step-by-step design techniques and operation-oriented track plans also make it easy to create your own realistic model railroad.
Book Synopsis Deep Learning with Python by : Francois Chollet
Download or read book Deep Learning with Python written by Francois Chollet and published by Simon and Schuster. This book was released on 2017-11-30 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning has made remarkable progress in recent years. We went from near-unusable speech and image recognition, to near-human accuracy. We went from machines that couldn't beat a serious Go player, to defeating a world champion. Behind this progress is deep learning—a combination of engineering advances, best practices, and theory that enables a wealth of previously impossible smart applications. About the Book Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects. What's Inside Deep learning from first principles Setting up your own deep-learning environment Image-classification models Deep learning for text and sequences Neural style transfer, text generation, and image generation About the Reader Readers need intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required. About the Author François Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does deep-learning research, with a focus on computer vision and the application of machine learning to formal reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others. Table of Contents PART 1 - FUNDAMENTALS OF DEEP LEARNING What is deep learning? Before we begin: the mathematical building blocks of neural networks Getting started with neural networks Fundamentals of machine learning PART 2 - DEEP LEARNING IN PRACTICE Deep learning for computer vision Deep learning for text and sequences Advanced deep-learning best practices Generative deep learning Conclusions appendix A - Installing Keras and its dependencies on Ubuntu appendix B - Running Jupyter notebooks on an EC2 GPU instance
Download or read book TinyML written by Pete Warden and published by O'Reilly Media. This book was released on 2019-12-16 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size—small enough to run on a microcontroller. With this practical book you’ll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google’s toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size
Book Synopsis Deep Learning with Structured Data by : Mark Ryan
Download or read book Deep Learning with Structured Data written by Mark Ryan and published by Simon and Schuster. This book was released on 2020-12-08 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep Learning with Structured Data teaches you powerful data analysis techniques for tabular data and relational databases. Summary Deep learning offers the potential to identify complex patterns and relationships hidden in data of all sorts. Deep Learning with Structured Data shows you how to apply powerful deep learning analysis techniques to the kind of structured, tabular data you'll find in the relational databases that real-world businesses depend on. Filled with practical, relevant applications, this book teaches you how deep learning can augment your existing machine learning and business intelligence systems. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Here’s a dirty secret: Half of the time in most data science projects is spent cleaning and preparing data. But there’s a better way: Deep learning techniques optimized for tabular data and relational databases deliver insights and analysis without requiring intense feature engineering. Learn the skills to unlock deep learning performance with much less data filtering, validating, and scrubbing. About the book Deep Learning with Structured Data teaches you powerful data analysis techniques for tabular data and relational databases. Get started using a dataset based on the Toronto transit system. As you work through the book, you’ll learn how easy it is to set up tabular data for deep learning, while solving crucial production concerns like deployment and performance monitoring. What's inside When and where to use deep learning The architecture of a Keras deep learning model Training, deploying, and maintaining models Measuring performance About the reader For readers with intermediate Python and machine learning skills. About the author Mark Ryan is a Data Science Manager at Intact Insurance. He holds a Master's degree in Computer Science from the University of Toronto. Table of Contents 1 Why deep learning with structured data? 2 Introduction to the example problem and Pandas dataframes 3 Preparing the data, part 1: Exploring and cleansing the data 4 Preparing the data, part 2: Transforming the data 5 Preparing and building the model 6 Training the model and running experiments 7 More experiments with the trained model 8 Deploying the model 9 Recommended next steps
Book Synopsis Deep Learning for Coders with fastai and PyTorch by : Jeremy Howard
Download or read book Deep Learning for Coders with fastai and PyTorch written by Jeremy Howard and published by O'Reilly Media. This book was released on 2020-06-29 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
Book Synopsis IPython Interactive Computing and Visualization Cookbook by : Cyrille Rossant
Download or read book IPython Interactive Computing and Visualization Cookbook written by Cyrille Rossant and published by Packt Publishing Ltd. This book was released on 2014-09-25 with total page 899 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended to anyone interested in numerical computing and data science: students, researchers, teachers, engineers, analysts, hobbyists... Basic knowledge of Python/NumPy is recommended. Some skills in mathematics will help you understand the theory behind the computational methods.
Book Synopsis Practical Machine Learning for Computer Vision by : Valliappa Lakshmanan
Download or read book Practical Machine Learning for Computer Vision written by Valliappa Lakshmanan and published by "O'Reilly Media, Inc.". This book was released on 2021-07-21 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: This practical book shows you how to employ machine learning models to extract information from images. ML engineers and data scientists will learn how to solve a variety of image problems including classification, object detection, autoencoders, image generation, counting, and captioning with proven ML techniques. This book provides a great introduction to end-to-end deep learning: dataset creation, data preprocessing, model design, model training, evaluation, deployment, and interpretability. Google engineers Valliappa Lakshmanan, Martin Görner, and Ryan Gillard show you how to develop accurate and explainable computer vision ML models and put them into large-scale production using robust ML architecture in a flexible and maintainable way. You'll learn how to design, train, evaluate, and predict with models written in TensorFlow or Keras. You'll learn how to: Design ML architecture for computer vision tasks Select a model (such as ResNet, SqueezeNet, or EfficientNet) appropriate to your task Create an end-to-end ML pipeline to train, evaluate, deploy, and explain your model Preprocess images for data augmentation and to support learnability Incorporate explainability and responsible AI best practices Deploy image models as web services or on edge devices Monitor and manage ML models
Book Synopsis Data Science with .NET and Polyglot Notebooks by : Matt Eland
Download or read book Data Science with .NET and Polyglot Notebooks written by Matt Eland and published by Packt Publishing Ltd. This book was released on 2024-08-30 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: ProgExpand your skillset by learning how to perform data science, machine learning, and generative AI experiments in .NET Interactive notebooks using a variety of languages, including C#, F#, SQL, and PowerShell Key Features Learn Conduct a full range of data science experiments with clear explanations from start to finish Learn key concepts in data analytics, machine learning, and AI and apply them to solve real-world problems Access all of the code online as a notebook and interactive GitHub Codespace Purchase of the print or Kindle book includes a free PDF eBook Book Description As the fields of data science, machine learning, and artificial intelligence rapidly evolve, .NET developers are eager to leverage their expertise to dive into these exciting domains but are often unsure of how to do so. Data Science in .NET with Polyglot Notebooks is the practical guide you need to seamlessly bring your .NET skills into the world of analytics and AI. With Microsoft’s .NET platform now robustly supporting machine learning and AI tasks, the introduction of tools such as .NET Interactive kernels and Polyglot Notebooks has opened up a world of possibilities for .NET developers. This book empowers you to harness the full potential of these cutting-edge technologies, guiding you through hands-on experiments that illustrate key concepts and principles. Through a series of interactive notebooks, you’ll not only master technical processes but also discover how to integrate these new skills into your current role or pivot to exciting opportunities in the data science field. By the end of the book, you’ll have acquired the necessary knowledge and confidence to apply cutting-edge data science techniques and deliver impactful solutions within the .NET ecosystem. What you will learn Load, analyze, and transform data using DataFrames, data visualization, and descriptive statistics Train machine learning models with ML.NET for classification and regression tasks Customize ML.NET model training pipelines with AutoML, transforms, and model trainers Apply best practices for deploying models and monitoring their performance Connect to generative AI models using Polyglot Notebooks Chain together complex AI tasks with AI orchestration, RAG, and Semantic Kernel Create interactive online documentation with Mermaid charts and GitHub Codespaces Who this book is for This book is for experienced C# or F# developers who want to transition into data science and machine learning while leveraging their .NET expertise. It’s ideal for those looking to learn ML.NET and Semantic kernel and extend their .NET skills to data science, machine learning, and Generative AI Workflows.rammer’s guide to data science using ML.NET, OpenAI, and Semantic Kernel
Book Synopsis Deep Learning Cookbook by : Douwe Osinga
Download or read book Deep Learning Cookbook written by Douwe Osinga and published by "O'Reilly Media, Inc.". This book was released on 2018-06-05 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning doesn’t have to be intimidating. Until recently, this machine-learning method required years of study, but with frameworks such as Keras and Tensorflow, software engineers without a background in machine learning can quickly enter the field. With the recipes in this cookbook, you’ll learn how to solve deep-learning problems for classifying and generating text, images, and music. Each chapter consists of several recipes needed to complete a single project, such as training a music recommending system. Author Douwe Osinga also provides a chapter with half a dozen techniques to help you if you’re stuck. Examples are written in Python with code available on GitHub as a set of Python notebooks. You’ll learn how to: Create applications that will serve real users Use word embeddings to calculate text similarity Build a movie recommender system based on Wikipedia links Learn how AIs see the world by visualizing their internal state Build a model to suggest emojis for pieces of text Reuse pretrained networks to build an inverse image search service Compare how GANs, autoencoders and LSTMs generate icons Detect music styles and index song collections
Book Synopsis How to Build Realistic Model Railroad Scenery by : Dave Frary
Download or read book How to Build Realistic Model Railroad Scenery written by Dave Frary and published by Kalmbach Publishing, Co.. This book was released on 2005 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Featuring today's newest products and equipment, this photo-packed guide features contemporary images of diesel locomotives and urban settings, plus updates to Dave's trademark scenery "recipes." Includes new chapters on Western scenery and desert modeling, and city scenery and urban settings.
Book Synopsis Developing Kaggle Notebooks by : Gabriel Preda
Download or read book Developing Kaggle Notebooks written by Gabriel Preda and published by Packt Publishing Ltd. This book was released on 2023-12-27 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: Printed in Color Develop an array of effective strategies and blueprints to approach any new data analysis on the Kaggle platform and create Notebooks with substance, style and impact Leverage the power of Generative AI with Kaggle Models Purchase of the print or Kindle book includes a free PDF eBook Key Features Master the basics of data ingestion, cleaning, exploration, and prepare to build baseline models Work robustly with any type, modality, and size of data, be it tabular, text, image, video, or sound Improve the style and readability of your Notebooks, making them more impactful and compelling Book DescriptionDeveloping Kaggle Notebooks introduces you to data analysis, with a focus on using Kaggle Notebooks to simultaneously achieve mastery in this fi eld and rise to the top of the Kaggle Notebooks tier. The book is structured as a sevenstep data analysis journey, exploring the features available in Kaggle Notebooks alongside various data analysis techniques. For each topic, we provide one or more notebooks, developing reusable analysis components through Kaggle's Utility Scripts feature, introduced progressively, initially as part of a notebook, and later extracted for use across future notebooks to enhance code reusability on Kaggle. It aims to make the notebooks' code more structured, easy to maintain, and readable. Although the focus of this book is on data analytics, some examples will guide you in preparing a complete machine learning pipeline using Kaggle Notebooks. Starting from initial data ingestion and data quality assessment, you'll move on to preliminary data analysis, advanced data exploration, feature qualifi cation to build a model baseline, and feature engineering. You'll also delve into hyperparameter tuning to iteratively refi ne your model and prepare for submission in Kaggle competitions. Additionally, the book touches on developing notebooks that leverage the power of generative AI using Kaggle Models.What you will learn Approach a dataset or competition to perform data analysis via a notebook Learn data ingestion and address issues arising with the ingested data Structure your code using reusable components Analyze in depth both small and large datasets of various types Distinguish yourself from the crowd with the content of your analysis Enhance your notebook style with a color scheme and other visual effects Captivate your audience with data and compelling storytelling techniques Who this book is for This book is suitable for a wide audience with a keen interest in data science and machine learning, looking to use Kaggle Notebooks to improve their skills and rise in the Kaggle Notebooks ranks. This book caters to: Beginners on Kaggle from any background Seasoned contributors who want to build various skills like ingestion, preparation, exploration, and visualization Expert contributors who want to learn from the Grandmasters to rise into the upper Kaggle rankings Professionals who already use Kaggle for learning and competing
Download or read book Model Railroad Craftsman written by and published by . This book was released on 1989 with total page 1806 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Easy Model Railroad Wiring by : Andy Sperandeo
Download or read book Easy Model Railroad Wiring written by Andy Sperandeo and published by Kalmbach Publishing, Co.. This book was released on 1999 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: A useful reference for every level modeler. Easy and reliable layout wiring techniques are included with essential techniques needed to wire a two-rail, DC-powered layout of any size or complexity.
Book Synopsis Approaching (Almost) Any Machine Learning Problem by : Abhishek Thakur
Download or read book Approaching (Almost) Any Machine Learning Problem written by Abhishek Thakur and published by Abhishek Thakur. This book was released on 2020-07-04 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is not a traditional book. The book has a lot of code. If you don't like the code first approach do not buy this book. Making code available on Github is not an option. This book is for people who have some theoretical knowledge of machine learning and deep learning and want to dive into applied machine learning. The book doesn't explain the algorithms but is more oriented towards how and what should you use to solve machine learning and deep learning problems. The book is not for you if you are looking for pure basics. The book is for you if you are looking for guidance on approaching machine learning problems. The book is best enjoyed with a cup of coffee and a laptop/workstation where you can code along. Table of contents: - Setting up your working environment - Supervised vs unsupervised learning - Cross-validation - Evaluation metrics - Arranging machine learning projects - Approaching categorical variables - Feature engineering - Feature selection - Hyperparameter optimization - Approaching image classification & segmentation - Approaching text classification/regression - Approaching ensembling and stacking - Approaching reproducible code & model serving There are no sub-headings. Important terms are written in bold. I will be answering all your queries related to the book and will be making YouTube tutorials to cover what has not been discussed in the book. To ask questions/doubts, visit this link: https://bit.ly/aamlquestions And Subscribe to my youtube channel: https://bit.ly/abhitubesub
Book Synopsis Artificial Intelligence with Microsoft Power BI by : Jen Stirrup
Download or read book Artificial Intelligence with Microsoft Power BI written by Jen Stirrup and published by "O'Reilly Media, Inc.". This book was released on 2024-03-28 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advance your Power BI skills by adding AI to your repertoire at a practice level. With this practical book, business-oriented software engineers and developers will learn the terminologies, practices, and strategy necessary to successfully incorporate AI into your business intelligence estate. Jen Stirrup, CEO of AI and BI leadership consultancy Data Relish, and Thomas Weinandy, research economist at Upside, show you how to use data already available to your organization. Springboarding from the skills that you already possess, this book adds AI to your organization's technical capability and expertise with Microsoft Power BI. By using your conceptual knowledge of BI, you'll learn how to choose the right model for your AI work and identify its value and validity. Use Power BI to build a good data model for AI Demystify the AI terminology that you need to know Identify AI project roles, responsibilities, and teams for AI Use AI models, including supervised machine learning techniques Develop and train models in Azure ML for consumption in Power BI Improve your business AI maturity level with Power BI Use the AI feedback loop to help you get started with the next project
Book Synopsis Natural Language Processing with Transformers, Revised Edition by : Lewis Tunstall
Download or read book Natural Language Processing with Transformers, Revised Edition written by Lewis Tunstall and published by "O'Reilly Media, Inc.". This book was released on 2022-05-26 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since their introduction in 2017, transformers have quickly become the dominant architecture for achieving state-of-the-art results on a variety of natural language processing tasks. If you're a data scientist or coder, this practical book -now revised in full color- shows you how to train and scale these large models using Hugging Face Transformers, a Python-based deep learning library. Transformers have been used to write realistic news stories, improve Google Search queries, and even create chatbots that tell corny jokes. In this guide, authors Lewis Tunstall, Leandro von Werra, and Thomas Wolf, among the creators of Hugging Face Transformers, use a hands-on approach to teach you how transformers work and how to integrate them in your applications. You'll quickly learn a variety of tasks they can help you solve. Build, debug, and optimize transformer models for core NLP tasks, such as text classification, named entity recognition, and question answering Learn how transformers can be used for cross-lingual transfer learning Apply transformers in real-world scenarios where labeled data is scarce Make transformer models efficient for deployment using techniques such as distillation, pruning, and quantization Train transformers from scratch and learn how to scale to multiple GPUs and distributed environments
Book Synopsis Machine Learning for Algorithmic Trading by : Stefan Jansen
Download or read book Machine Learning for Algorithmic Trading written by Stefan Jansen and published by Packt Publishing Ltd. This book was released on 2020-07-31 with total page 822 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.