Order Structure and Topological Methods in Nonlinear Partial Differential Equations

Download Order Structure and Topological Methods in Nonlinear Partial Differential Equations PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9812566244
Total Pages : 202 pages
Book Rating : 4.8/5 (125 download)

DOWNLOAD NOW!


Book Synopsis Order Structure and Topological Methods in Nonlinear Partial Differential Equations by : Yihong Du

Download or read book Order Structure and Topological Methods in Nonlinear Partial Differential Equations written by Yihong Du and published by World Scientific. This book was released on 2006 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: The maximum principle induces an order structure for partial differential equations, and has become an important tool in nonlinear analysis. This book is the first of two volumes to systematically introduce the applications of order structure in certain nonlinear partial differential equation problems.The maximum principle is revisited through the use of the Krein-Rutman theorem and the principal eigenvalues. Its various versions, such as the moving plane and sliding plane methods, are applied to a variety of important problems of current interest. The upper and lower solution method, especially its weak version, is presented in its most up-to-date form with enough generality to cater for wide applications. Recent progress on the boundary blow-up problems and their applications are discussed, as well as some new symmetry and Liouville type results over half and entire spaces. Some of the results included here are published for the first time.

Maximum Principles in Differential Equations

Download Maximum Principles in Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461252822
Total Pages : 271 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Maximum Principles in Differential Equations by : Murray H. Protter

Download or read book Maximum Principles in Differential Equations written by Murray H. Protter and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: Maximum Principles are central to the theory and applications of second-order partial differential equations and systems. This self-contained text establishes the fundamental principles and provides a variety of applications.

The Action Principle and Partial Differential Equations

Download The Action Principle and Partial Differential Equations PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 9780691049571
Total Pages : 332 pages
Book Rating : 4.0/5 (495 download)

DOWNLOAD NOW!


Book Synopsis The Action Principle and Partial Differential Equations by : Demetrios Christodoulou

Download or read book The Action Principle and Partial Differential Equations written by Demetrios Christodoulou and published by Princeton University Press. This book was released on 2000-01-17 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces new methods in the theory of partial differential equations derivable from a Lagrangian. These methods constitute, in part, an extension to partial differential equations of the methods of symplectic geometry and Hamilton-Jacobi theory for Lagrangian systems of ordinary differential equations. A distinguishing characteristic of this approach is that one considers, at once, entire families of solutions of the Euler-Lagrange equations, rather than restricting attention to single solutions at a time. The second part of the book develops a general theory of integral identities, the theory of "compatible currents," which extends the work of E. Noether. Finally, the third part introduces a new general definition of hyperbolicity, based on a quadratic form associated with the Lagrangian, which overcomes the obstacles arising from singularities of the characteristic variety that were encountered in previous approaches. On the basis of the new definition, the domain-of-dependence theorem and stability properties of solutions are derived. Applications to continuum mechanics are discussed throughout the book. The last chapter is devoted to the electrodynamics of nonlinear continuous media.

Partial Differential Equations

Download Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461448093
Total Pages : 416 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations by : Jürgen Jost

Download or read book Partial Differential Equations written by Jürgen Jost and published by Springer Science & Business Media. This book was released on 2012-11-13 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an ideal graduate-level introduction to the theory of partial differential equations. The first part of the book describes the basic mathematical problems and structures associated with elliptic, parabolic, and hyperbolic partial differential equations, and explores the connections between these fundamental types. Aspects of Brownian motion or pattern formation processes are also presented. The second part focuses on existence schemes and develops estimates for solutions of elliptic equations, such as Sobolev space theory, weak and strong solutions, Schauder estimates, and Moser iteration. In particular, the reader will learn the basic techniques underlying current research in elliptic partial differential equations. This revised and expanded third edition is enhanced with many additional examples that will help motivate the reader. New features include a reorganized and extended chapter on hyperbolic equations, as well as a new chapter on the relations between different types of partial differential equations, including first-order hyperbolic systems, Langevin and Fokker-Planck equations, viscosity solutions for elliptic PDEs, and much more. Also, the new edition contains additional material on systems of elliptic partial differential equations, and it explains in more detail how the Harnack inequality can be used for the regularity of solutions.

A Basic Course in Partial Differential Equations

Download A Basic Course in Partial Differential Equations PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821852558
Total Pages : 305 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis A Basic Course in Partial Differential Equations by : Qing Han

Download or read book A Basic Course in Partial Differential Equations written by Qing Han and published by American Mathematical Soc.. This book was released on 2011 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a textbook for an introductory graduate course on partial differential equations. Han focuses on linear equations of first and second order. An important feature of his treatment is that the majority of the techniques are applicable more generally. In particular, Han emphasizes a priori estimates throughout the text, even for those equations that can be solved explicitly. Such estimates are indispensable tools for proving the existence and uniqueness of solutions to PDEs, being especially important for nonlinear equations. The estimates are also crucial to establishing properties of the solutions, such as the continuous dependence on parameters. Han's book is suitable for students interested in the mathematical theory of partial differential equations, either as an overview of the subject or as an introduction leading to further study.

The Maximum Principle

Download The Maximum Principle PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3764381450
Total Pages : 240 pages
Book Rating : 4.7/5 (643 download)

DOWNLOAD NOW!


Book Synopsis The Maximum Principle by : Patrizia Pucci

Download or read book The Maximum Principle written by Patrizia Pucci and published by Springer Science & Business Media. This book was released on 2007-12-23 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Maximum principles are bedrock results in the theory of second order elliptic equations. This principle, simple enough in essence, lends itself to a quite remarkable number of subtle uses when combined appropriately with other notions. Intended for a wide audience, the book provides a clear and comprehensive explanation of the various maximum principles available in elliptic theory, from their beginning for linear equations to recent work on nonlinear and singular equations.

Partial Differential Equations

Download Partial Differential Equations PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 140086660X
Total Pages : 287 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations by : Michael Shearer

Download or read book Partial Differential Equations written by Michael Shearer and published by Princeton University Press. This book was released on 2015-03-01 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible yet rigorous introduction to partial differential equations This textbook provides beginning graduate students and advanced undergraduates with an accessible introduction to the rich subject of partial differential equations (PDEs). It presents a rigorous and clear explanation of the more elementary theoretical aspects of PDEs, while also drawing connections to deeper analysis and applications. The book serves as a needed bridge between basic undergraduate texts and more advanced books that require a significant background in functional analysis. Topics include first order equations and the method of characteristics, second order linear equations, wave and heat equations, Laplace and Poisson equations, and separation of variables. The book also covers fundamental solutions, Green's functions and distributions, beginning functional analysis applied to elliptic PDEs, traveling wave solutions of selected parabolic PDEs, and scalar conservation laws and systems of hyperbolic PDEs. Provides an accessible yet rigorous introduction to partial differential equations Draws connections to advanced topics in analysis Covers applications to continuum mechanics An electronic solutions manual is available only to professors An online illustration package is available to professors

Partial Differential Equations with Numerical Methods

Download Partial Differential Equations with Numerical Methods PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540887059
Total Pages : 263 pages
Book Rating : 4.5/5 (48 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations with Numerical Methods by : Stig Larsson

Download or read book Partial Differential Equations with Numerical Methods written by Stig Larsson and published by Springer Science & Business Media. This book was released on 2008-12-05 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.

Partial Differential Equations

Download Partial Differential Equations PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470054565
Total Pages : 467 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations by : Walter A. Strauss

Download or read book Partial Differential Equations written by Walter A. Strauss and published by John Wiley & Sons. This book was released on 2007-12-21 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Partial Differential Equations in Classical Mathematical Physics

Download Partial Differential Equations in Classical Mathematical Physics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521558464
Total Pages : 704 pages
Book Rating : 4.5/5 (584 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations in Classical Mathematical Physics by : Isaak Rubinstein

Download or read book Partial Differential Equations in Classical Mathematical Physics written by Isaak Rubinstein and published by Cambridge University Press. This book was released on 1998-04-28 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: The unique feature of this book is that it considers the theory of partial differential equations in mathematical physics as the language of continuous processes, that is, as an interdisciplinary science that treats the hierarchy of mathematical phenomena as reflections of their physical counterparts. Special attention is drawn to tracing the development of these mathematical phenomena in different natural sciences, with examples drawn from continuum mechanics, electrodynamics, transport phenomena, thermodynamics, and chemical kinetics. At the same time, the authors trace the interrelation between the different types of problems - elliptic, parabolic, and hyperbolic - as the mathematical counterparts of stationary and evolutionary processes. This combination of mathematical comprehensiveness and natural scientific motivation represents a step forward in the presentation of the classical theory of PDEs, one that will be appreciated by both students and researchers alike.

General Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions

Download General Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319066323
Total Pages : 148 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis General Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions by : Qi Lü

Download or read book General Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions written by Qi Lü and published by Springer. This book was released on 2014-06-02 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: The classical Pontryagin maximum principle (addressed to deterministic finite dimensional control systems) is one of the three milestones in modern control theory. The corresponding theory is by now well-developed in the deterministic infinite dimensional setting and for the stochastic differential equations. However, very little is known about the same problem but for controlled stochastic (infinite dimensional) evolution equations when the diffusion term contains the control variables and the control domains are allowed to be non-convex. Indeed, it is one of the longstanding unsolved problems in stochastic control theory to establish the Pontryagin type maximum principle for this kind of general control systems: this book aims to give a solution to this problem. This book will be useful for both beginners and experts who are interested in optimal control theory for stochastic evolution equations.

Maximum Principles in Differential Equations

Download Maximum Principles in Differential Equations PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 272 pages
Book Rating : 4.:/5 (319 download)

DOWNLOAD NOW!


Book Synopsis Maximum Principles in Differential Equations by : Murray H. Protter

Download or read book Maximum Principles in Differential Equations written by Murray H. Protter and published by . This book was released on 1967 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Thermodynamics of Energy Conversion and Transport

Download Thermodynamics of Energy Conversion and Transport PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461212863
Total Pages : 355 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Thermodynamics of Energy Conversion and Transport by : Stanislaw Sieniutycz

Download or read book Thermodynamics of Energy Conversion and Transport written by Stanislaw Sieniutycz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scientists and engineers are nowadays faced with the problem of optimizing complex systems subject to constraints from, ecology, economics, and thermodynamics. It is chiefly to the last of these that this volume is addressed. Intended for physicists, chemists, and engineers, the book uses examples from solar, thermal, mechanical, chemical, and environmental engineering to focus on the use of thermodynamic criteria for optimizing energy conversion and transmission. The early chapters centre on solar energy conversion, the second section discusses the transfer and conversion of chemical energy, while the concluding chapters deal with geometric methods in thermodynamics.

A First Course in Complex Analysis

Download A First Course in Complex Analysis PDF Online Free

Author :
Publisher : Morgan & Claypool Publishers
ISBN 13 : 1636393152
Total Pages : 237 pages
Book Rating : 4.6/5 (363 download)

DOWNLOAD NOW!


Book Synopsis A First Course in Complex Analysis by : Allan R. Willms

Download or read book A First Course in Complex Analysis written by Allan R. Willms and published by Morgan & Claypool Publishers. This book was released on 2022-04-20 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces complex analysis and is appropriate for a first course in the subject at typically the third-year University level. It introduces the exponential function very early but does so rigorously. It covers the usual topics of functions, differentiation, analyticity, contour integration, the theorems of Cauchy and their many consequences, Taylor and Laurent series, residue theory, the computation of certain improper real integrals, and a brief introduction to conformal mapping. Throughout the text an emphasis is placed on geometric properties of complex numbers and visualization of complex mappings.

Equations and Analytical Tools in Mathematical Physics

Download Equations and Analytical Tools in Mathematical Physics PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811654417
Total Pages : 255 pages
Book Rating : 4.8/5 (116 download)

DOWNLOAD NOW!


Book Synopsis Equations and Analytical Tools in Mathematical Physics by : Yichao Zhu

Download or read book Equations and Analytical Tools in Mathematical Physics written by Yichao Zhu and published by Springer Nature. This book was released on 2021-10-04 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: ​This book highlights a concise and readable introduction to typical treatments of partial differential equations in mathematical physics. Mathematical physics is regarded by many as a profound discipline. In conventional textbooks of mathematical physics, the known and the new pieces of knowledge often intertwine with each other. The book aims to ease readers' struggle by facilitating a smooth transition to new knowledge. To achieve so, the author designs knowledge maps before each chapter and provides comparative summaries in each chapter whenever appropriate. Through these unique ways, readers can clarify the underlying structures among different equations and extend one's vision to the big picture. The book also emphasizes applications of the knowledge by providing practical examples. The book is intended for all those interested in mathematical physics, enabling them to develop a solid command in using partial differential equations to solve physics and engineering problems in a not-so-painful learning experience.

Second Order Parabolic Differential Equations

Download Second Order Parabolic Differential Equations PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9789810228835
Total Pages : 472 pages
Book Rating : 4.2/5 (288 download)

DOWNLOAD NOW!


Book Synopsis Second Order Parabolic Differential Equations by : Gary M. Lieberman

Download or read book Second Order Parabolic Differential Equations written by Gary M. Lieberman and published by World Scientific. This book was released on 1996 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction. Maximum principles. Introduction to the theory of weak solutions. Hölder estimates. Existence, uniqueness, and regularity of solutions. Further theory of weak solutions. Strong solutions. Fixed point theorems and their applications. Comparison and maximum principles. Boundary gradient estimates. Global and local gradient bounds. Hölder gradient estimates and existence theorems. The oblique derivative problem for quasilinear parabolic equations. Fully nonlinear equations. Introduction. Monge-Ampère and Hessian equations.

Special Functions and Analysis of Differential Equations

Download Special Functions and Analysis of Differential Equations PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000078566
Total Pages : 371 pages
Book Rating : 4.0/5 ( download)

DOWNLOAD NOW!


Book Synopsis Special Functions and Analysis of Differential Equations by : Praveen Agarwal

Download or read book Special Functions and Analysis of Differential Equations written by Praveen Agarwal and published by CRC Press. This book was released on 2020-09-08 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential Equations are very important tools in Mathematical Analysis. They are widely found in mathematics itself and in its applications to statistics, computing, electrical circuit analysis, dynamical systems, economics, biology, and so on. Recently there has been an increasing interest in and widely-extended use of differential equations and systems of fractional order (that is, of arbitrary order) as better models of phenomena in various physics, engineering, automatization, biology and biomedicine, chemistry, earth science, economics, nature, and so on. Now, new unified presentation and extensive development of special functions associated with fractional calculus are necessary tools, being related to the theory of differentiation and integration of arbitrary order (i.e., fractional calculus) and to the fractional order (or multi-order) differential and integral equations. This book provides learners with the opportunity to develop an understanding of advancements of special functions and the skills needed to apply advanced mathematical techniques to solve complex differential equations and Partial Differential Equations (PDEs). Subject matters should be strongly related to special functions involving mathematical analysis and its numerous applications. The main objective of this book is to highlight the importance of fundamental results and techniques of the theory of complex analysis for differential equations and PDEs and emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Specific topics include but are not limited to Partial differential equations Least squares on first-order system Sequence and series in functional analysis Special functions related to fractional (non-integer) order control systems and equations Various special functions related to generalized fractional calculus Operational method in fractional calculus Functional analysis and operator theory Mathematical physics Applications of numerical analysis and applied mathematics Computational mathematics Mathematical modeling This book provides the recent developments in special functions and differential equations and publishes high-quality, peer-reviewed book chapters in the area of nonlinear analysis, ordinary differential equations, partial differential equations, and related applications.