IPython Interactive Computing and Visualization Cookbook

Download IPython Interactive Computing and Visualization Cookbook PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 178328482X
Total Pages : 899 pages
Book Rating : 4.7/5 (832 download)

DOWNLOAD NOW!


Book Synopsis IPython Interactive Computing and Visualization Cookbook by : Cyrille Rossant

Download or read book IPython Interactive Computing and Visualization Cookbook written by Cyrille Rossant and published by Packt Publishing Ltd. This book was released on 2014-09-25 with total page 899 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended to anyone interested in numerical computing and data science: students, researchers, teachers, engineers, analysts, hobbyists... Basic knowledge of Python/NumPy is recommended. Some skills in mathematics will help you understand the theory behind the computational methods.

Fundamentals of Statistical Exponential Families

Download Fundamentals of Statistical Exponential Families PDF Online Free

Author :
Publisher : IMS
ISBN 13 : 9780940600102
Total Pages : 302 pages
Book Rating : 4.6/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals of Statistical Exponential Families by : Lawrence D. Brown

Download or read book Fundamentals of Statistical Exponential Families written by Lawrence D. Brown and published by IMS. This book was released on 1986 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Maximum Likelihood for Social Science

Download Maximum Likelihood for Social Science PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316946657
Total Pages : 327 pages
Book Rating : 4.3/5 (169 download)

DOWNLOAD NOW!


Book Synopsis Maximum Likelihood for Social Science by : Michael D. Ward

Download or read book Maximum Likelihood for Social Science written by Michael D. Ward and published by Cambridge University Press. This book was released on 2018-11-15 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides a practical introduction to the method of maximum likelihood as used in social science research. Ward and Ahlquist focus on applied computation in R and use real social science data from actual, published research. Unique among books at this level, it develops simulation-based tools for model evaluation and selection alongside statistical inference. The book covers standard models for categorical data as well as counts, duration data, and strategies for dealing with data missingness. By working through examples, math, and code, the authors build an understanding about the contexts in which maximum likelihood methods are useful and develop skills in translating mathematical statements into executable computer code. Readers will not only be taught to use likelihood-based tools and generate meaningful interpretations, but they will also acquire a solid foundation for continued study of more advanced statistical techniques.

Lectures on Probability Theory and Mathematical Statistics - 3rd Edition

Download Lectures on Probability Theory and Mathematical Statistics - 3rd Edition PDF Online Free

Author :
Publisher : Createspace Independent Publishing Platform
ISBN 13 : 9781981369195
Total Pages : 670 pages
Book Rating : 4.3/5 (691 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Probability Theory and Mathematical Statistics - 3rd Edition by : Marco Taboga

Download or read book Lectures on Probability Theory and Mathematical Statistics - 3rd Edition written by Marco Taboga and published by Createspace Independent Publishing Platform. This book was released on 2017-12-08 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is a collection of 80 short and self-contained lectures covering most of the topics that are usually taught in intermediate courses in probability theory and mathematical statistics. There are hundreds of examples, solved exercises and detailed derivations of important results. The step-by-step approach makes the book easy to understand and ideal for self-study. One of the main aims of the book is to be a time saver: it contains several results and proofs, especially on probability distributions, that are hard to find in standard references and are scattered here and there in more specialistic books. The topics covered by the book are as follows. PART 1 - MATHEMATICAL TOOLS: set theory, permutations, combinations, partitions, sequences and limits, review of differentiation and integration rules, the Gamma and Beta functions. PART 2 - FUNDAMENTALS OF PROBABILITY: events, probability, independence, conditional probability, Bayes' rule, random variables and random vectors, expected value, variance, covariance, correlation, covariance matrix, conditional distributions and conditional expectation, independent variables, indicator functions. PART 3 - ADDITIONAL TOPICS IN PROBABILITY THEORY: probabilistic inequalities, construction of probability distributions, transformations of probability distributions, moments and cross-moments, moment generating functions, characteristic functions. PART 4 - PROBABILITY DISTRIBUTIONS: Bernoulli, binomial, Poisson, uniform, exponential, normal, Chi-square, Gamma, Student's t, F, multinomial, multivariate normal, multivariate Student's t, Wishart. PART 5 - MORE DETAILS ABOUT THE NORMAL DISTRIBUTION: linear combinations, quadratic forms, partitions. PART 6 - ASYMPTOTIC THEORY: sequences of random vectors and random variables, pointwise convergence, almost sure convergence, convergence in probability, mean-square convergence, convergence in distribution, relations between modes of convergence, Laws of Large Numbers, Central Limit Theorems, Continuous Mapping Theorem, Slutsky's Theorem. PART 7 - FUNDAMENTALS OF STATISTICS: statistical inference, point estimation, set estimation, hypothesis testing, statistical inferences about the mean, statistical inferences about the variance.

Maximum Likelihood Estimation and Inference

Download Maximum Likelihood Estimation and Inference PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119977711
Total Pages : 286 pages
Book Rating : 4.1/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Maximum Likelihood Estimation and Inference by : Russell B. Millar

Download or read book Maximum Likelihood Estimation and Inference written by Russell B. Millar and published by John Wiley & Sons. This book was released on 2011-07-26 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book takes a fresh look at the popular and well-established method of maximum likelihood for statistical estimation and inference. It begins with an intuitive introduction to the concepts and background of likelihood, and moves through to the latest developments in maximum likelihood methodology, including general latent variable models and new material for the practical implementation of integrated likelihood using the free ADMB software. Fundamental issues of statistical inference are also examined, with a presentation of some of the philosophical debates underlying the choice of statistical paradigm. Key features: Provides an accessible introduction to pragmatic maximum likelihood modelling. Covers more advanced topics, including general forms of latent variable models (including non-linear and non-normal mixed-effects and state-space models) and the use of maximum likelihood variants, such as estimating equations, conditional likelihood, restricted likelihood and integrated likelihood. Adopts a practical approach, with a focus on providing the relevant tools required by researchers and practitioners who collect and analyze real data. Presents numerous examples and case studies across a wide range of applications including medicine, biology and ecology. Features applications from a range of disciplines, with implementation in R, SAS and/or ADMB. Provides all program code and software extensions on a supporting website. Confines supporting theory to the final chapters to maintain a readable and pragmatic focus of the preceding chapters. This book is not just an accessible and practical text about maximum likelihood, it is a comprehensive guide to modern maximum likelihood estimation and inference. It will be of interest to readers of all levels, from novice to expert. It will be of great benefit to researchers, and to students of statistics from senior undergraduate to graduate level. For use as a course text, exercises are provided at the end of each chapter.

Statistical Modelling by Exponential Families

Download Statistical Modelling by Exponential Families PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108476597
Total Pages : 297 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Statistical Modelling by Exponential Families by : Rolf Sundberg

Download or read book Statistical Modelling by Exponential Families written by Rolf Sundberg and published by Cambridge University Press. This book was released on 2019-08-29 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: A readable, digestible introduction to essential theory and wealth of applications, with a vast set of examples and numerous exercises.

Maximum Likelihood Estimation of Restricted Parameters

Download Maximum Likelihood Estimation of Restricted Parameters PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 68 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Maximum Likelihood Estimation of Restricted Parameters by : H. D. Brunk

Download or read book Maximum Likelihood Estimation of Restricted Parameters written by H. D. Brunk and published by . This book was released on 1956 with total page 68 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Theory of Point Estimation

Download Theory of Point Estimation PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387227288
Total Pages : 610 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Theory of Point Estimation by : Erich L. Lehmann

Download or read book Theory of Point Estimation written by Erich L. Lehmann and published by Springer Science & Business Media. This book was released on 2006-05-02 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second, much enlarged edition by Lehmann and Casella of Lehmann's classic text on point estimation maintains the outlook and general style of the first edition. All of the topics are updated, while an entirely new chapter on Bayesian and hierarchical Bayesian approaches is provided, and there is much new material on simultaneous estimation. Each chapter concludes with a Notes section which contains suggestions for further study. This is a companion volume to the second edition of Lehmann's "Testing Statistical Hypotheses".

Progressive Censoring

Download Progressive Censoring PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461213347
Total Pages : 255 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Progressive Censoring by : N. Balakrishnan

Download or read book Progressive Censoring written by N. Balakrishnan and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new book offers a guide to the theory and methods of progressive censoring. In many industrial experiments involving lifetimes of machines or units, experiments have to be terminated early. Progressive Censoring first introduces progressive sampling foundations, and then discusses various properties of progressive samples. The book points out the greater efficiency gained by using this scheme instead of classical right-censoring methods.

Asymptotic Theory of Statistics and Probability

Download Asymptotic Theory of Statistics and Probability PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387759700
Total Pages : 726 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Asymptotic Theory of Statistics and Probability by : Anirban DasGupta

Download or read book Asymptotic Theory of Statistics and Probability written by Anirban DasGupta and published by Springer Science & Business Media. This book was released on 2008-03-07 with total page 726 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique book delivers an encyclopedic treatment of classic as well as contemporary large sample theory, dealing with both statistical problems and probabilistic issues and tools. The book is unique in its detailed coverage of fundamental topics. It is written in an extremely lucid style, with an emphasis on the conceptual discussion of the importance of a problem and the impact and relevance of the theorems. There is no other book in large sample theory that matches this book in coverage, exercises and examples, bibliography, and lucid conceptual discussion of issues and theorems.

Generalized Linear Models

Download Generalized Linear Models PDF Online Free

Author :
Publisher : SAGE Publications
ISBN 13 : 1506320244
Total Pages : 135 pages
Book Rating : 4.5/5 (63 download)

DOWNLOAD NOW!


Book Synopsis Generalized Linear Models by : Jeff Gill

Download or read book Generalized Linear Models written by Jeff Gill and published by SAGE Publications. This book was released on 2000-08-07 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author explains the theoretical underpinnings of generalized linear models so that researchers can decide how to select the best way to adapt their data for this type of analysis. Examples are provided to illustrate the application of GLM to actual data and the author includes his Web address where additional resources can be found.

Asymptotic Statistical Inference

Download Asymptotic Statistical Inference PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811590036
Total Pages : 540 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Asymptotic Statistical Inference by : Shailaja Deshmukh

Download or read book Asymptotic Statistical Inference written by Shailaja Deshmukh and published by Springer Nature. This book was released on 2021-07-05 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents the fundamental concepts from asymptotic statistical inference theory, elaborating on some basic large sample optimality properties of estimators and some test procedures. The most desirable property of consistency of an estimator and its large sample distribution, with suitable normalization, are discussed, the focus being on the consistent and asymptotically normal (CAN) estimators. It is shown that for the probability models belonging to an exponential family and a Cramer family, the maximum likelihood estimators of the indexing parameters are CAN. The book describes some large sample test procedures, in particular, the most frequently used likelihood ratio test procedure. Various applications of the likelihood ratio test procedure are addressed, when the underlying probability model is a multinomial distribution. These include tests for the goodness of fit and tests for contingency tables. The book also discusses a score test and Wald’s test, their relationship with the likelihood ratio test and Karl Pearson’s chi-square test. An important finding is that, while testing any hypothesis about the parameters of a multinomial distribution, a score test statistic and Karl Pearson’s chi-square test statistic are identical. Numerous illustrative examples of differing difficulty level are incorporated to clarify the concepts. For better assimilation of the notions, various exercises are included in each chapter. Solutions to almost all the exercises are given in the last chapter, to motivate students towards solving these exercises and to enable digestion of the underlying concepts. The concepts from asymptotic inference are crucial in modern statistics, but are difficult to grasp in view of their abstract nature. To overcome this difficulty, keeping up with the recent trend of using R software for statistical computations, the book uses it extensively, for illustrating the concepts, verifying the properties of estimators and carrying out various test procedures. The last section of the chapters presents R codes to reveal and visually demonstrate the hidden aspects of different concepts and procedures. Augmenting the theory with R software is a novel and a unique feature of the book. The book is designed primarily to serve as a text book for a one semester introductory course in asymptotic statistical inference, in a post-graduate program, such as Statistics, Bio-statistics or Econometrics. It will also provide sufficient background information for studying inference in stochastic processes. The book will cater to the need of a concise but clear and student-friendly book introducing, conceptually and computationally, basics of asymptotic inference.

Lévy Processes

Download Lévy Processes PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461201977
Total Pages : 414 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Lévy Processes by : Ole E Barndorff-Nielsen

Download or read book Lévy Processes written by Ole E Barndorff-Nielsen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Lévy process is a continuous-time analogue of a random walk, and as such, is at the cradle of modern theories of stochastic processes. Martingales, Markov processes, and diffusions are extensions and generalizations of these processes. In the past, representatives of the Lévy class were considered most useful for applications to either Brownian motion or the Poisson process. Nowadays the need for modeling jumps, bursts, extremes and other irregular behavior of phenomena in nature and society has led to a renaissance of the theory of general Lévy processes. Researchers and practitioners in fields as diverse as physics, meteorology, statistics, insurance, and finance have rediscovered the simplicity of Lévy processes and their enormous flexibility in modeling tails, dependence and path behavior. This volume, with an excellent introductory preface, describes the state-of-the-art of this rapidly evolving subject with special emphasis on the non-Brownian world. Leading experts present surveys of recent developments, or focus on some most promising applications. Despite its special character, every topic is aimed at the non- specialist, keen on learning about the new exciting face of a rather aged class of processes. An extensive bibliography at the end of each article makes this an invaluable comprehensive reference text. For the researcher and graduate student, every article contains open problems and points out directions for futurearch. The accessible nature of the work makes this an ideal introductory text for graduate seminars in applied probability, stochastic processes, physics, finance, and telecommunications, and a unique guide to the world of Lévy processes.

Regression for Categorical Data

Download Regression for Categorical Data PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139499580
Total Pages : 573 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Regression for Categorical Data by : Gerhard Tutz

Download or read book Regression for Categorical Data written by Gerhard Tutz and published by Cambridge University Press. This book was released on 2011-11-21 with total page 573 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces basic and advanced concepts of categorical regression with a focus on the structuring constituents of regression, including regularization techniques to structure predictors. In addition to standard methods such as the logit and probit model and extensions to multivariate settings, the author presents more recent developments in flexible and high-dimensional regression, which allow weakening of assumptions on the structuring of the predictor and yield fits that are closer to the data. A generalized linear model is used as a unifying framework whenever possible in particular parametric models that are treated within this framework. Many topics not normally included in books on categorical data analysis are treated here, such as nonparametric regression; selection of predictors by regularized estimation procedures; ternative models like the hurdle model and zero-inflated regression models for count data; and non-standard tree-based ensemble methods. The book is accompanied by an R package that contains data sets and code for all the examples.

Theory of Statistical Inference

Download Theory of Statistical Inference PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000488012
Total Pages : 470 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Theory of Statistical Inference by : Anthony Almudevar

Download or read book Theory of Statistical Inference written by Anthony Almudevar and published by CRC Press. This book was released on 2021-12-30 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theory of Statistical Inference is designed as a reference on statistical inference for researchers and students at the graduate or advanced undergraduate level. It presents a unified treatment of the foundational ideas of modern statistical inference, and would be suitable for a core course in a graduate program in statistics or biostatistics. The emphasis is on the application of mathematical theory to the problem of inference, leading to an optimization theory allowing the choice of those statistical methods yielding the most efficient use of data. The book shows how a small number of key concepts, such as sufficiency, invariance, stochastic ordering, decision theory and vector space algebra play a recurring and unifying role. The volume can be divided into four sections. Part I provides a review of the required distribution theory. Part II introduces the problem of statistical inference. This includes the definitions of the exponential family, invariant and Bayesian models. Basic concepts of estimation, confidence intervals and hypothesis testing are introduced here. Part III constitutes the core of the volume, presenting a formal theory of statistical inference. Beginning with decision theory, this section then covers uniformly minimum variance unbiased (UMVU) estimation, minimum risk equivariant (MRE) estimation and the Neyman-Pearson test. Finally, Part IV introduces large sample theory. This section begins with stochastic limit theorems, the δ-method, the Bahadur representation theorem for sample quantiles, large sample U-estimation, the Cramér-Rao lower bound and asymptotic efficiency. A separate chapter is then devoted to estimating equation methods. The volume ends with a detailed development of large sample hypothesis testing, based on the likelihood ratio test (LRT), Rao score test and the Wald test. Features This volume includes treatment of linear and nonlinear regression models, ANOVA models, generalized linear models (GLM) and generalized estimating equations (GEE). An introduction to decision theory (including risk, admissibility, classification, Bayes and minimax decision rules) is presented. The importance of this sometimes overlooked topic to statistical methodology is emphasized. The volume emphasizes throughout the important role that can be played by group theory and invariance in statistical inference. Nonparametric (rank-based) methods are derived by the same principles used for parametric models and are therefore presented as solutions to well-defined mathematical problems, rather than as robust heuristic alternatives to parametric methods. Each chapter ends with a set of theoretical and applied exercises integrated with the main text. Problems involving R programming are included. Appendices summarize the necessary background in analysis, matrix algebra and group theory.

Algebraic Statistics

Download Algebraic Statistics PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470475103
Total Pages : 506 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Statistics by : Seth Sullivant

Download or read book Algebraic Statistics written by Seth Sullivant and published by American Mathematical Society. This book was released on 2023-11-17 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic statistics uses tools from algebraic geometry, commutative algebra, combinatorics, and their computational sides to address problems in statistics and its applications. The starting point for this connection is the observation that many statistical models are semialgebraic sets. The algebra/statistics connection is now over twenty years old, and this book presents the first broad introductory treatment of the subject. Along with background material in probability, algebra, and statistics, this book covers a range of topics in algebraic statistics including algebraic exponential families, likelihood inference, Fisher's exact test, bounds on entries of contingency tables, design of experiments, identifiability of hidden variable models, phylogenetic models, and model selection. With numerous examples, references, and over 150 exercises, this book is suitable for both classroom use and independent study.

Encyclopedia of Statistical Sciences, Volume 3

Download Encyclopedia of Statistical Sciences, Volume 3 PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0471743844
Total Pages : 706 pages
Book Rating : 4.4/5 (717 download)

DOWNLOAD NOW!


Book Synopsis Encyclopedia of Statistical Sciences, Volume 3 by :

Download or read book Encyclopedia of Statistical Sciences, Volume 3 written by and published by John Wiley & Sons. This book was released on 2005-12-16 with total page 706 pages. Available in PDF, EPUB and Kindle. Book excerpt: ENCYCLOPEDIA OF STATISTICAL SCIENCES