Matrix Methods in Data Mining and Pattern Recognition, Second Edition

Download Matrix Methods in Data Mining and Pattern Recognition, Second Edition PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611975867
Total Pages : 244 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Matrix Methods in Data Mining and Pattern Recognition, Second Edition by : Lars Elden

Download or read book Matrix Methods in Data Mining and Pattern Recognition, Second Edition written by Lars Elden and published by SIAM. This book was released on 2019-08-30 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thoroughly revised second edition provides an updated treatment of numerical linear algebra techniques for solving problems in data mining and pattern recognition. Adopting an application-oriented approach, the author introduces matrix theory and decompositions, describes how modern matrix methods can be applied in real life scenarios, and provides a set of tools that students can modify for a particular application. Building on material from the first edition, the author discusses basic graph concepts and their matrix counterparts. He introduces the graph Laplacian and properties of its eigenvectors needed in spectral partitioning and describes spectral graph partitioning applied to social networks and text classification. Examples are included to help readers visualize the results. This new edition also presents matrix-based methods that underlie many of the algorithms used for big data. The book provides a solid foundation to further explore related topics and presents applications such as classification of handwritten digits, text mining, text summarization, PageRank computations related to the Google search engine, and facial recognition. Exercises and computer assignments are available on a Web page that supplements the book. This book is primarily for undergraduate students who have previously taken an introductory scientific computing/numerical analysis course and graduate students in data mining and pattern recognition areas who need an introduction to linear algebra techniques.

Matrix Methods in Data Mining and Pattern Recognition

Download Matrix Methods in Data Mining and Pattern Recognition PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 0898716268
Total Pages : 226 pages
Book Rating : 4.8/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Matrix Methods in Data Mining and Pattern Recognition by : Lars Elden

Download or read book Matrix Methods in Data Mining and Pattern Recognition written by Lars Elden and published by SIAM. This book was released on 2007-07-12 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Several very powerful numerical linear algebra techniques are available for solving problems in data mining and pattern recognition. This application-oriented book describes how modern matrix methods can be used to solve these problems, gives an introduction to matrix theory and decompositions, and provides students with a set of tools that can be modified for a particular application.Matrix Methods in Data Mining and Pattern Recognition is divided into three parts. Part I gives a short introduction to a few application areas before presenting linear algebra concepts and matrix decompositions that students can use in problem-solving environments such as MATLAB®. Some mathematical proofs that emphasize the existence and properties of the matrix decompositions are included. In Part II, linear algebra techniques are applied to data mining problems. Part III is a brief introduction to eigenvalue and singular value algorithms. The applications discussed by the author are: classification of handwritten digits, text mining, text summarization, pagerank computations related to the GoogleÔ search engine, and face recognition. Exercises and computer assignments are available on a Web page that supplements the book.Audience The book is intended for undergraduate students who have previously taken an introductory scientific computing/numerical analysis course. Graduate students in various data mining and pattern recognition areas who need an introduction to linear algebra techniques will also find the book useful.Contents Preface; Part I: Linear Algebra Concepts and Matrix Decompositions. Chapter 1: Vectors and Matrices in Data Mining and Pattern Recognition; Chapter 2: Vectors and Matrices; Chapter 3: Linear Systems and Least Squares; Chapter 4: Orthogonality; Chapter 5: QR Decomposition; Chapter 6: Singular Value Decomposition; Chapter 7: Reduced-Rank Least Squares Models; Chapter 8: Tensor Decomposition; Chapter 9: Clustering and Nonnegative Matrix Factorization; Part II: Data Mining Applications. Chapter 10: Classification of Handwritten Digits; Chapter 11: Text Mining; Chapter 12: Page Ranking for a Web Search Engine; Chapter 13: Automatic Key Word and Key Sentence Extraction; Chapter 14: Face Recognition Using Tensor SVD. Part III: Computing the Matrix Decompositions. Chapter 15: Computing Eigenvalues and Singular Values; Bibliography; Index.

Solving Nonlinear Equations with Iterative Methods

Download Solving Nonlinear Equations with Iterative Methods PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611977274
Total Pages : 201 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Solving Nonlinear Equations with Iterative Methods by : C. T. Kelley

Download or read book Solving Nonlinear Equations with Iterative Methods written by C. T. Kelley and published by SIAM. This book was released on with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: This user-oriented guide describes state-of-the-art methods for nonlinear equations and shows, via algorithms in pseudocode and Julia with several examples, how to choose an appropriate iterative method for a given problem and write an efficient solver or apply one written by others. A sequel to the author’s Solving Nonlinear Equations with Newton’s Methods (SIAM, 2003), this book contains new material on pseudo-transient continuation, mixed-precision solvers, and Anderson acceleration. It is supported by a Julia package and a suite of Jupyter notebooks and includes examples of nonlinear problems from many disciplines. This book is will be useful to researchers who solve nonlinear equations, students in numerical analysis, and the Julia community.

Iterative Methods and Preconditioners for Systems of Linear Equations

Download Iterative Methods and Preconditioners for Systems of Linear Equations PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611976901
Total Pages : 285 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Iterative Methods and Preconditioners for Systems of Linear Equations by : Gabriele Ciaramella

Download or read book Iterative Methods and Preconditioners for Systems of Linear Equations written by Gabriele Ciaramella and published by SIAM. This book was released on 2022-02-08 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: Iterative methods use successive approximations to obtain more accurate solutions. This book gives an introduction to iterative methods and preconditioning for solving discretized elliptic partial differential equations and optimal control problems governed by the Laplace equation, for which the use of matrix-free procedures is crucial. All methods are explained and analyzed starting from the historical ideas of the inventors, which are often quoted from their seminal works. Iterative Methods and Preconditioners for Systems of Linear Equations grew out of a set of lecture notes that were improved and enriched over time, resulting in a clear focus for the teaching methodology, which derives complete convergence estimates for all methods, illustrates and provides MATLAB codes for all methods, and studies and tests all preconditioners first as stationary iterative solvers. This textbook is appropriate for undergraduate and graduate students who want an overview or deeper understanding of iterative methods. Its focus on both analysis and numerical experiments allows the material to be taught with very little preparation, since all the arguments are self-contained, and makes it appropriate for self-study as well. It can be used in courses on iterative methods, Krylov methods and preconditioners, and numerical optimal control. Scientists and engineers interested in new topics and applications will also find the text useful.

Riemann Problems and Jupyter Solutions

Download Riemann Problems and Jupyter Solutions PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611976219
Total Pages : 179 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Riemann Problems and Jupyter Solutions by : David I. Ketcheson

Download or read book Riemann Problems and Jupyter Solutions written by David I. Ketcheson and published by SIAM. This book was released on 2020-06-26 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses an important class of mathematical problems (the Riemann problem) for first-order hyperbolic partial differential equations (PDEs), which arise when modeling wave propagation in applications such as fluid dynamics, traffic flow, acoustics, and elasticity. The solution of the Riemann problem captures essential information about these models and is the key ingredient in modern numerical methods for their solution. This book covers the fundamental ideas related to classical Riemann solutions, including their special structure and the types of waves that arise, as well as the ideas behind fast approximate solvers for the Riemann problem. The emphasis is on the general ideas, but each chapter delves into a particular application. Riemann Problems and Jupyter Solutions is available in electronic form as a collection of Jupyter notebooks that contain executable computer code and interactive figures and animations, allowing readers to grasp how the concepts presented are affected by important parameters and to experiment by varying those parameters themselves. The only interactive book focused entirely on the Riemann problem, it develops each concept in the context of a specific physical application, helping readers apply physical intuition in learning mathematical concepts. Graduate students and researchers working in the analysis and/or numerical solution of hyperbolic PDEs will find this book of interest. This includes mathematicians, as well as scientists and engineers, working on wave propagation problems. Educators interested in developing instructional materials using Jupyter notebooks will also find this book useful. The book is appropriate for courses in Numerical Methods for Hyperbolic PDEs and Analysis of Hyperbolic PDEs, and it can be a great supplement for courses in computational fluid dynamics, acoustics, and gas dynamics.

Location Estimation from the Ground Up

Download Location Estimation from the Ground Up PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611976294
Total Pages : 217 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Location Estimation from the Ground Up by : Sivan Toledo

Download or read book Location Estimation from the Ground Up written by Sivan Toledo and published by SIAM. This book was released on 2020-09-17 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: The location of an object can often be determined from indirect measurements using a process called estimation. This book explains the mathematical formulation of location-estimation problems and the statistical properties of these mathematical models. It also presents algorithms that are used to resolve these models to obtain location estimates, including the simplest linear models, nonlinear models (location estimation using satellite navigation systems and estimation of the signal arrival time from those satellites), dynamical systems (estimation of an entire path taken by a vehicle), and models with integer ambiguities (GPS location estimation that is centimeter-level accurate). Location Estimation from the Ground Up clearly presents analytic and algorithmic topics not covered in other books, including simple algorithms for Kalman filtering and smoothing, the solution of separable nonlinear optimization problems, estimation with integer ambiguities, and the implicit-function approach to estimating covariance matrices when the estimator is a minimizer or maximizer. It takes a unified approach to estimation while highlighting the differences between classes of estimation problems. The only book on estimation written for math and computer science students and graduates, it includes problems at the end of each chapter, many with solutions, to help readers deepen their understanding of the material and guide them through small programming projects that apply theory and algorithms to the solution of real-world location-estimation problems. The book’s core audience consists of engineers, including software engineers and algorithm developers, and graduate students who work on location-estimation projects and who need help translating the theory into algorithms, code, and deep understanding of the problem in front of them. Instructors in mathematics, computer science, and engineering may also find the book of interest as a primary or supplementary text for courses in location estimation and navigation.

Computed Tomography

Download Computed Tomography PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611976677
Total Pages : 355 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Computed Tomography by : Per Christian Hansen

Download or read book Computed Tomography written by Per Christian Hansen and published by SIAM. This book was released on 2021-09-25 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes fundamental computational methods for image reconstruction in computed tomography (CT) with a focus on a pedagogical presentation of these methods and their underlying concepts. Insights into the advantages, limitations, and theoretical and computational aspects of the methods are included, giving a balanced presentation that allows readers to understand and implement CT reconstruction algorithms. Unique in its emphasis on the interplay between modeling, computing, and algorithm development, Computed Tomography: Algorithms, Insight, and Just Enough Theory develops the mathematical and computational aspects of three main classes of reconstruction methods: classical filtered back-projection, algebraic iterative methods, and variational methods based on nonlinear numerical optimization algorithms. It spotlights the link between CT and numerical methods, which is rarely discussed in current literature, and describes the effects of incomplete data using both microlocal analysis and singular value decomposition (SVD). This book sets the stage for further exploration of CT algorithms. Readers will be able to grasp the underlying mathematical models to motivate and derive the basic principles of CT reconstruction and will gain basic understanding of fundamental computational challenges of CT, such as the influence of noisy and incomplete data, as well as the reconstruction capabilities and the convergence of the iterative algorithms. Exercises using MATLAB are included, allowing readers to experiment with the algorithms and making the book suitable for teaching and self-study. Computed Tomography: Algorithms, Insight, and Just Enough Theory is primarily aimed at students, researchers, and practitioners interested in the computational aspects of X-ray CT and is also relevant for anyone working with other forms of tomography, such as neutron and electron tomography, that share the same mathematical formulation. With its basis in lecture notes developed for a PhD course, it is appropriate as a textbook for courses on computational methods for X-ray CT and computational methods for inverse problems.

Pattern Recognition and Machine Learning

Download Pattern Recognition and Machine Learning PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9781493938438
Total Pages : 0 pages
Book Rating : 4.9/5 (384 download)

DOWNLOAD NOW!


Book Synopsis Pattern Recognition and Machine Learning by : Christopher M. Bishop

Download or read book Pattern Recognition and Machine Learning written by Christopher M. Bishop and published by Springer. This book was released on 2016-08-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Matrix Methods in Data Mining and Pattern Recognition

Download Matrix Methods in Data Mining and Pattern Recognition PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9780898718867
Total Pages : 234 pages
Book Rating : 4.7/5 (188 download)

DOWNLOAD NOW!


Book Synopsis Matrix Methods in Data Mining and Pattern Recognition by : Lars Elden

Download or read book Matrix Methods in Data Mining and Pattern Recognition written by Lars Elden and published by SIAM. This book was released on 2007-01-01 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: This application-oriented book describes how modern matrix methods can be used to solve problems in data mining and pattern recognition, gives an introduction to matrix theory and decompositions, and provides students with a set of tools that can be modified for a particular application.

Linear Algebra and Matrix Analysis for Statistics

Download Linear Algebra and Matrix Analysis for Statistics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1482248247
Total Pages : 580 pages
Book Rating : 4.4/5 (822 download)

DOWNLOAD NOW!


Book Synopsis Linear Algebra and Matrix Analysis for Statistics by : Sudipto Banerjee

Download or read book Linear Algebra and Matrix Analysis for Statistics written by Sudipto Banerjee and published by CRC Press. This book was released on 2014-06-06 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: Assuming no prior knowledge of linear algebra, this self-contained text offers a gradual exposition to linear algebra without sacrificing the rigor of the subject. It presents both the vector space approach and the canonical forms in matrix theory. The book covers important topics in linear algebra that are useful for statisticians, including the concept of rank, the fundamental theorem of linear algebra, projectors, and quadratic forms. It also provides an extensive collection of exercises on theoretical concepts and numerical computations.

Analysis and Linear Algebra: The Singular Value Decomposition and Applications

Download Analysis and Linear Algebra: The Singular Value Decomposition and Applications PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470463326
Total Pages : 217 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Analysis and Linear Algebra: The Singular Value Decomposition and Applications by : James Bisgard

Download or read book Analysis and Linear Algebra: The Singular Value Decomposition and Applications written by James Bisgard and published by American Mathematical Soc.. This book was released on 2020-10-19 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an elementary analytically inclined journey to a fundamental result of linear algebra: the Singular Value Decomposition (SVD). SVD is a workhorse in many applications of linear algebra to data science. Four important applications relevant to data science are considered throughout the book: determining the subspace that “best” approximates a given set (dimension reduction of a data set); finding the “best” lower rank approximation of a given matrix (compression and general approximation problems); the Moore-Penrose pseudo-inverse (relevant to solving least squares problems); and the orthogonal Procrustes problem (finding the orthogonal transformation that most closely transforms a given collection to a given configuration), as well as its orientation-preserving version. The point of view throughout is analytic. Readers are assumed to have had a rigorous introduction to sequences and continuity. These are generalized and applied to linear algebraic ideas. Along the way to the SVD, several important results relevant to a wide variety of fields (including random matrices and spectral graph theory) are explored: the Spectral Theorem; minimax characterizations of eigenvalues; and eigenvalue inequalities. By combining analytic and linear algebraic ideas, readers see seemingly disparate areas interacting in beautiful and applicable ways.

Kernel Methods for Pattern Analysis

Download Kernel Methods for Pattern Analysis PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521813976
Total Pages : 520 pages
Book Rating : 4.8/5 (139 download)

DOWNLOAD NOW!


Book Synopsis Kernel Methods for Pattern Analysis by : John Shawe-Taylor

Download or read book Kernel Methods for Pattern Analysis written by John Shawe-Taylor and published by Cambridge University Press. This book was released on 2004-06-28 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher Description

Foundations of Machine Learning, second edition

Download Foundations of Machine Learning, second edition PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262351366
Total Pages : 505 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Machine Learning, second edition by : Mehryar Mohri

Download or read book Foundations of Machine Learning, second edition written by Mehryar Mohri and published by MIT Press. This book was released on 2018-12-25 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms. This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics. Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review. This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition.

Nonnegative Matrix Factorization

Download Nonnegative Matrix Factorization PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611976413
Total Pages : 376 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Nonnegative Matrix Factorization by : Nicolas Gillis

Download or read book Nonnegative Matrix Factorization written by Nicolas Gillis and published by SIAM. This book was released on 2020-12-18 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonnegative matrix factorization (NMF) in its modern form has become a standard tool in the analysis of high-dimensional data sets. This book provides a comprehensive and up-to-date account of the most important aspects of the NMF problem and is the first to detail its theoretical aspects, including geometric interpretation, nonnegative rank, complexity, and uniqueness. It explains why understanding these theoretical insights is key to using this computational tool effectively and meaningfully. Nonnegative Matrix Factorization is accessible to a wide audience and is ideal for anyone interested in the workings of NMF. It discusses some new results on the nonnegative rank and the identifiability of NMF and makes available MATLAB codes for readers to run the numerical examples presented in the book. Graduate students starting to work on NMF and researchers interested in better understanding the NMF problem and how they can use it will find this book useful. It can be used in advanced undergraduate and graduate-level courses on numerical linear algebra and on advanced topics in numerical linear algebra and requires only a basic knowledge of linear algebra and optimization.

Applied Linear Algebra and Matrix Methods

Download Applied Linear Algebra and Matrix Methods PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 303139562X
Total Pages : 330 pages
Book Rating : 4.0/5 (313 download)

DOWNLOAD NOW!


Book Synopsis Applied Linear Algebra and Matrix Methods by : Timothy G. Feeman

Download or read book Applied Linear Algebra and Matrix Methods written by Timothy G. Feeman and published by Springer Nature. This book was released on 2023-11-24 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is designed for a first course in linear algebra for undergraduate students from a wide range of quantitative and data driven fields. By focusing on applications and implementation, students will be prepared to go on to apply the power of linear algebra in their own discipline. With an ever-increasing need to understand and solve real problems, this text aims to provide a growing and diverse group of students with an applied linear algebra toolkit they can use to successfully grapple with the complex world and the challenging problems that lie ahead. Applications such as least squares problems, information retrieval, linear regression, Markov processes, finding connections in networks, and more, are introduced on a small scale as early as possible and then explored in more generality as projects. Additionally, the book draws on the geometry of vectors and matrices as the basis for the mathematics, with the concept of orthogonality taking center stage. Important matrix factorizations as well as the concepts of eigenvalues and eigenvectors emerge organically from the interplay between matrix computations and geometry. The R files are extra and freely available. They include basic code and templates for many of the in-text examples, most of the projects, and solutions to selected exercises. As much as possible, data sets and matrix entries are included in the files, thus reducing the amount of manual data entry required.

Applied Mathematics for the Analysis of Biomedical Data

Download Applied Mathematics for the Analysis of Biomedical Data PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119269512
Total Pages : 408 pages
Book Rating : 4.1/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Applied Mathematics for the Analysis of Biomedical Data by : Peter J. Costa

Download or read book Applied Mathematics for the Analysis of Biomedical Data written by Peter J. Costa and published by John Wiley & Sons. This book was released on 2017-02-21 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Features a practical approach to the analysis of biomedical data via mathematical methods and provides a MATLAB® toolbox for the collection, visualization, and evaluation of experimental and real-life data Applied Mathematics for the Analysis of Biomedical Data: Models, Methods, and MATLAB® presents a practical approach to the task that biological scientists face when analyzing data. The primary focus is on the application of mathematical models and scientific computing methods to provide insight into the behavior of biological systems. The author draws upon his experience in academia, industry, and government–sponsored research as well as his expertise in MATLAB to produce a suite of computer programs with applications in epidemiology, machine learning, and biostatistics. These models are derived from real–world data and concerns. Among the topics included are the spread of infectious disease (HIV/AIDS) through a population, statistical pattern recognition methods to determine the presence of disease in a diagnostic sample, and the fundamentals of hypothesis testing. In addition, the author uses his professional experiences to present unique case studies whose analyses provide detailed insights into biological systems and the problems inherent in their examination. The book contains a well-developed and tested set of MATLAB functions that act as a general toolbox for practitioners of quantitative biology and biostatistics. This combination of MATLAB functions and practical tips amplifies the book’s technical merit and value to industry professionals. Through numerous examples and sample code blocks, the book provides readers with illustrations of MATLAB programming. Moreover, the associated toolbox permits readers to engage in the process of data analysis without needing to delve deeply into the mathematical theory. This gives an accessible view of the material for readers with varied backgrounds. As a result, the book provides a streamlined framework for the development of mathematical models, algorithms, and the corresponding computer code. In addition, the book features: Real–world computational procedures that can be readily applied to similar problems without the need for keen mathematical acumen Clear delineation of topics to accelerate access to data analysis Access to a book companion website containing the MATLAB toolbox created for this book, as well as a Solutions Manual with solutions to selected exercises Applied Mathematics for the Analysis of Biomedical Data: Models, Methods, and MATLAB® is an excellent textbook for students in mathematics, biostatistics, the life and social sciences, and quantitative, computational, and mathematical biology. This book is also an ideal reference for industrial scientists, biostatisticians, product development scientists, and practitioners who use mathematical models of biological systems in biomedical research, medical device development, and pharmaceutical submissions.

Principles of Data Mining

Download Principles of Data Mining PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 9780262082907
Total Pages : 594 pages
Book Rating : 4.0/5 (829 download)

DOWNLOAD NOW!


Book Synopsis Principles of Data Mining by : David J. Hand

Download or read book Principles of Data Mining written by David J. Hand and published by MIT Press. This book was released on 2001-08-17 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The growing interest in data mining is motivated by a common problem across disciplines: how does one store, access, model, and ultimately describe and understand very large data sets? Historically, different aspects of data mining have been addressed independently by different disciplines. This is the first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The book consists of three sections. The first, foundations, provides a tutorial overview of the principles underlying data mining algorithms and their application. The presentation emphasizes intuition rather than rigor. The second section, data mining algorithms, shows how algorithms are constructed to solve specific problems in a principled manner. The algorithms covered include trees and rules for classification and regression, association rules, belief networks, classical statistical models, nonlinear models such as neural networks, and local "memory-based" models. The third section shows how all of the preceding analysis fits together when applied to real-world data mining problems. Topics include the role of metadata, how to handle missing data, and data preprocessing.