Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Mathematics Of Multi Objective Optimization
Download Mathematics Of Multi Objective Optimization full books in PDF, epub, and Kindle. Read online Mathematics Of Multi Objective Optimization ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Mathematics of Multi Objective Optimization by : P. Serafini
Download or read book Mathematics of Multi Objective Optimization written by P. Serafini and published by Springer. This book was released on 2014-05-04 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Multi-Objective Optimization Problems by : Fran Sérgio Lobato
Download or read book Multi-Objective Optimization Problems written by Fran Sérgio Lobato and published by Springer. This book was released on 2017-07-03 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is aimed at undergraduate and graduate students in applied mathematics or computer science, as a tool for solving real-world design problems. The present work covers fundamentals in multi-objective optimization and applications in mathematical and engineering system design using a new optimization strategy, namely the Self-Adaptive Multi-objective Optimization Differential Evolution (SA-MODE) algorithm. This strategy is proposed in order to reduce the number of evaluations of the objective function through dynamic update of canonical Differential Evolution parameters (population size, crossover probability and perturbation rate). The methodology is applied to solve mathematical functions considering test cases from the literature and various engineering systems design, such as cantilevered beam design, biochemical reactor, crystallization process, machine tool spindle design, rotary dryer design, among others.
Book Synopsis Theory of Multiobjective Optimization by : Yoshikazu Sawaragi
Download or read book Theory of Multiobjective Optimization written by Yoshikazu Sawaragi and published by Elsevier. This book was released on 1985-09-19 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression. - Best operator approximation,- Non-Lagrange interpolation,- Generic Karhunen-Loeve transform- Generalised low-rank matrix approximation- Optimal data compression- Optimal nonlinear filtering
Book Synopsis Multiobjective Optimization by : Yann Collette
Download or read book Multiobjective Optimization written by Yann Collette and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text offers many multiobjective optimization methods accompanied by analytical examples, and it treats problems not only in engineering but also operations research and management. It explains how to choose the best method to solve a problem and uses three primary application examples: optimization of the numerical simulation of an industrial process; sizing of a telecommunication network; and decision-aid tools for the sorting of bids.
Book Synopsis Multiobjective Optimization by : Jürgen Branke
Download or read book Multiobjective Optimization written by Jürgen Branke and published by Springer. This book was released on 2008-10-18 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiobjective optimization deals with solving problems having not only one, but multiple, often conflicting, criteria. Such problems can arise in practically every field of science, engineering and business, and the need for efficient and reliable solution methods is increasing. The task is challenging due to the fact that, instead of a single optimal solution, multiobjective optimization results in a number of solutions with different trade-offs among criteria, also known as Pareto optimal or efficient solutions. Hence, a decision maker is needed to provide additional preference information and to identify the most satisfactory solution. Depending on the paradigm used, such information may be introduced before, during, or after the optimization process. Clearly, research and application in multiobjective optimization involve expertise in optimization as well as in decision support. This state-of-the-art survey originates from the International Seminar on Practical Approaches to Multiobjective Optimization, held in Dagstuhl Castle, Germany, in December 2006, which brought together leading experts from various contemporary multiobjective optimization fields, including evolutionary multiobjective optimization (EMO), multiple criteria decision making (MCDM) and multiple criteria decision aiding (MCDA). This book gives a unique and detailed account of the current status of research and applications in the field of multiobjective optimization. It contains 16 chapters grouped in the following 5 thematic sections: Basics on Multiobjective Optimization; Recent Interactive and Preference-Based Approaches; Visualization of Solutions; Modelling, Implementation and Applications; and Quality Assessment, Learning, and Future Challenges.
Book Synopsis Search Methodologies by : Edmund K. Burke
Download or read book Search Methodologies written by Edmund K. Burke and published by Springer Science & Business Media. This book was released on 2013-10-18 with total page 715 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first edition of Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques was originally put together to offer a basic introduction to the various search and optimization techniques that students might need to use during their research, and this new edition continues this tradition. Search Methodologies has been expanded and brought completely up to date, including new chapters covering scatter search, GRASP, and very large neighborhood search. The chapter authors are drawn from across Computer Science and Operations Research and include some of the world’s leading authorities in their field. The book provides useful guidelines for implementing the methods and frameworks described and offers valuable tutorials to students and researchers in the field. “As I embarked on the pleasant journey of reading through the chapters of this book, I became convinced that this is one of the best sources of introductory material on the search methodologies topic to be found. The book’s subtitle, “Introductory Tutorials in Optimization and Decision Support Techniques”, aptly describes its aim, and the editors and contributors to this volume have achieved this aim with remarkable success. The chapters in this book are exemplary in giving useful guidelines for implementing the methods and frameworks described.” Fred Glover, Leeds School of Business, University of Colorado Boulder, USA “[The book] aims to present a series of well written tutorials by the leading experts in their fields. Moreover, it does this by covering practically the whole possible range of topics in the discipline. It enables students and practitioners to study and appreciate the beauty and the power of some of the computational search techniques that are able to effectively navigate through search spaces that are sometimes inconceivably large. I am convinced that this second edition will build on the success of the first edition and that it will prove to be just as popular.” Jacek Blazewicz, Institute of Computing Science, Poznan University of Technology and Institute of Bioorganic Chemistry, Polish Academy of Sciences
Book Synopsis Multi-Objective Optimization using Evolutionary Algorithms by : Kalyanmoy Deb
Download or read book Multi-Objective Optimization using Evolutionary Algorithms written by Kalyanmoy Deb and published by John Wiley & Sons. This book was released on 2001-07-05 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimierung mit mehreren Zielen, evolutionäre Algorithmen: Dieses Buch wendet sich vorrangig an Einsteiger, denn es werden kaum Vorkenntnisse vorausgesetzt. Geboten werden alle notwendigen Grundlagen, um die Theorie auf Probleme der Ingenieurtechnik, der Vorhersage und der Planung anzuwenden. Der Autor gibt auch einen Ausblick auf Forschungsaufgaben der Zukunft.
Book Synopsis Nonlinear Multiobjective Optimization by : Claus Hillermeier
Download or read book Nonlinear Multiobjective Optimization written by Claus Hillermeier and published by Springer Science & Business Media. This book was released on 2001 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: Arguably, many industrial optimization problems are of the multiobjective type. The present work, after providing a survey of the state of the art in multiobjective optimization, gives new insight into this important mathematical field by consequently taking up the viewpoint of differential geometry. This approach, unprecedented in the literature, very naturally results in a generalized homotopy method for multiobjective optimization which is theoretically well-founded and numerically efficient. The power of the new method is demonstrated by solving two real-life problems of industrial optimization. The book presents recent results obtained by the author and is aimed at mathematicians, scientists, students and practitioners interested in optimization and numerical homotopy methods.
Book Synopsis Recent Advances and Historical Development of Vector Optimization by : Johannes Jahn
Download or read book Recent Advances and Historical Development of Vector Optimization written by Johannes Jahn and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: In vector optimization one investigates optimization problems in an abstract setting which have a not necessarily real-valued objective function. This scientific discipline is closely related to multi-objective optimization and multi-criteria decision making. This book contains refereed contributions to the "International Conference on Vector Optimization" held at the Technical University of Darmstadt from August 4-7, 1986. This meeting was an interdisciplinary forum devoted to new results in the theory, to applications as well as to the solution of vector optimization problems which are relevant in practice. Because of the great variety of topics covered by the contributions, the 25 articles of this volume are organized in different sections: Historical retrospect, mathematical theory, goal setting and decision making, engineering applications, and related topics. The papers of the invited State-of-the-Art Tutorials given by Professors J.M. Borwein, H. Eschenauer, W. Stadler and P.L. Yu are also included.
Book Synopsis Nonlinear Multiobjective Optimization by : Kaisa Miettinen
Download or read book Nonlinear Multiobjective Optimization written by Kaisa Miettinen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Problems with multiple objectives and criteria are generally known as multiple criteria optimization or multiple criteria decision-making (MCDM) problems. So far, these types of problems have typically been modelled and solved by means of linear programming. However, many real-life phenomena are of a nonlinear nature, which is why we need tools for nonlinear programming capable of handling several conflicting or incommensurable objectives. In this case, methods of traditional single objective optimization and linear programming are not enough; we need new ways of thinking, new concepts, and new methods - nonlinear multiobjective optimization. Nonlinear Multiobjective Optimization provides an extensive, up-to-date, self-contained and consistent survey, review of the literature and of the state of the art on nonlinear (deterministic) multiobjective optimization, its methods, its theory and its background. The amount of literature on multiobjective optimization is immense. The treatment in this book is based on approximately 1500 publications in English printed mainly after the year 1980. Problems related to real-life applications often contain irregularities and nonsmoothnesses. The treatment of nondifferentiable multiobjective optimization in the literature is rather rare. For this reason, this book contains material about the possibilities, background, theory and methods of nondifferentiable multiobjective optimization as well. This book is intended for both researchers and students in the areas of (applied) mathematics, engineering, economics, operations research and management science; it is meant for both professionals and practitioners in many different fields of application. The intention has been to provide a consistent summary that may help in selecting an appropriate method for the problem to be solved. It is hoped the extensive bibliography will be of value to researchers.
Book Synopsis Multi-Objective Optimization by : Jyotsna K. Mandal
Download or read book Multi-Objective Optimization written by Jyotsna K. Mandal and published by Springer. This book was released on 2018-08-18 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together the latest findings on efficient solutions of multi/many-objective optimization problems from the leading researchers in the field. The focus is on solving real-world optimization problems using strategies ranging from evolutionary to hybrid frameworks, and involving various computation platforms. The topics covered include solution frameworks using evolutionary to hybrid models in application areas like Analytics, Cancer Research, Traffic Management, Networks and Communications, E-Governance, Quantum Technology, Image Processing, etc. As such, the book offers a valuable resource for all postgraduate students and researchers interested in exploring solution frameworks for multi/many-objective optimization problems.
Book Synopsis Multi-Objective Optimization in Theory and Practice II: Metaheuristic Algorithms by : André A. Keller
Download or read book Multi-Objective Optimization in Theory and Practice II: Metaheuristic Algorithms written by André A. Keller and published by Bentham Science Publishers. This book was released on 2019-03-28 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multi-Objective Optimization in Theory and Practice is a simplified two-part approach to multi-objective optimization (MOO) problems. This second part focuses on the use of metaheuristic algorithms in more challenging practical cases. The book includes ten chapters that cover several advanced MOO techniques. These include the determination of Pareto-optimal sets of solutions, metaheuristic algorithms, genetic search algorithms and evolution strategies, decomposition algorithms, hybridization of different metaheuristics, and many-objective (more than three objectives) optimization and parallel computation. The final section of the book presents information about the design and types of fifty test problems for which the Pareto-optimal front is approximated. For each of them, the package NSGA-II is used to approximate the Pareto-optimal front. It is an essential handbook for students and teachers involved in advanced optimization courses in engineering, information science and mathematics degree programs.
Book Synopsis Multi-Objective Optimization in Computational Intelligence: Theory and Practice by : Thu Bui, Lam
Download or read book Multi-Objective Optimization in Computational Intelligence: Theory and Practice written by Thu Bui, Lam and published by IGI Global. This book was released on 2008-05-31 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multi-objective optimization (MO) is a fast-developing field in computational intelligence research. Giving decision makers more options to choose from using some post-analysis preference information, there are a number of competitive MO techniques with an increasingly large number of MO real-world applications. Multi-Objective Optimization in Computational Intelligence: Theory and Practice explores the theoretical, as well as empirical, performance of MOs on a wide range of optimization issues including combinatorial, real-valued, dynamic, and noisy problems. This book provides scholars, academics, and practitioners with a fundamental, comprehensive collection of research on multi-objective optimization techniques, applications, and practices.
Book Synopsis Efficient Learning Machines by : Mariette Awad
Download or read book Efficient Learning Machines written by Mariette Awad and published by Apress. This book was released on 2015-04-27 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning techniques provide cost-effective alternatives to traditional methods for extracting underlying relationships between information and data and for predicting future events by processing existing information to train models. Efficient Learning Machines explores the major topics of machine learning, including knowledge discovery, classifications, genetic algorithms, neural networking, kernel methods, and biologically-inspired techniques. Mariette Awad and Rahul Khanna’s synthetic approach weaves together the theoretical exposition, design principles, and practical applications of efficient machine learning. Their experiential emphasis, expressed in their close analysis of sample algorithms throughout the book, aims to equip engineers, students of engineering, and system designers to design and create new and more efficient machine learning systems. Readers of Efficient Learning Machines will learn how to recognize and analyze the problems that machine learning technology can solve for them, how to implement and deploy standard solutions to sample problems, and how to design new systems and solutions. Advances in computing performance, storage, memory, unstructured information retrieval, and cloud computing have coevolved with a new generation of machine learning paradigms and big data analytics, which the authors present in the conceptual context of their traditional precursors. Awad and Khanna explore current developments in the deep learning techniques of deep neural networks, hierarchical temporal memory, and cortical algorithms. Nature suggests sophisticated learning techniques that deploy simple rules to generate highly intelligent and organized behaviors with adaptive, evolutionary, and distributed properties. The authors examine the most popular biologically-inspired algorithms, together with a sample application to distributed datacenter management. They also discuss machine learning techniques for addressing problems of multi-objective optimization in which solutions in real-world systems are constrained and evaluated based on how well they perform with respect to multiple objectives in aggregate. Two chapters on support vector machines and their extensions focus on recent improvements to the classification and regression techniques at the core of machine learning.
Book Synopsis Multi-Objective Optimization using Artificial Intelligence Techniques by : Seyedali Mirjalili
Download or read book Multi-Objective Optimization using Artificial Intelligence Techniques written by Seyedali Mirjalili and published by Springer. This book was released on 2019-07-24 with total page 66 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the most well-regarded and recent nature-inspired algorithms capable of solving optimization problems with multiple objectives. Firstly, it provides preliminaries and essential definitions in multi-objective problems and different paradigms to solve them. It then presents an in-depth explanations of the theory, literature review, and applications of several widely-used algorithms, such as Multi-objective Particle Swarm Optimizer, Multi-Objective Genetic Algorithm and Multi-objective GreyWolf Optimizer Due to the simplicity of the techniques and flexibility, readers from any field of study can employ them for solving multi-objective optimization problem. The book provides the source codes for all the proposed algorithms on a dedicated webpage.
Book Synopsis Mathematics of Optimization: How to do Things Faster by : Steven J. Miller
Download or read book Mathematics of Optimization: How to do Things Faster written by Steven J. Miller and published by American Mathematical Soc.. This book was released on 2017-12-20 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization Theory is an active area of research with numerous applications; many of the books are designed for engineering classes, and thus have an emphasis on problems from such fields. Covering much of the same material, there is less emphasis on coding and detailed applications as the intended audience is more mathematical. There are still several important problems discussed (especially scheduling problems), but there is more emphasis on theory and less on the nuts and bolts of coding. A constant theme of the text is the “why” and the “how” in the subject. Why are we able to do a calculation efficiently? How should we look at a problem? Extensive effort is made to motivate the mathematics and isolate how one can apply ideas/perspectives to a variety of problems. As many of the key algorithms in the subject require too much time or detail to analyze in a first course (such as the run-time of the Simplex Algorithm), there are numerous comparisons to simpler algorithms which students have either seen or can quickly learn (such as the Euclidean algorithm) to motivate the type of results on run-time savings.
Book Synopsis Evolutionary Multiobjective Optimization by : Ajith Abraham
Download or read book Evolutionary Multiobjective Optimization written by Ajith Abraham and published by Springer Science & Business Media. This book was released on 2005-09-05 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: Evolutionary Multi-Objective Optimization is an expanding field of research. This book brings a collection of papers with some of the most recent advances in this field. The topic and content is currently very fashionable and has immense potential for practical applications and includes contributions from leading researchers in the field. Assembled in a compelling and well-organised fashion, Evolutionary Computation Based Multi-Criteria Optimization will prove beneficial for both academic and industrial scientists and engineers engaged in research and development and application of evolutionary algorithm based MCO. Packed with must-find information, this book is the first to comprehensively and clearly address the issue of evolutionary computation based MCO, and is an essential read for any researcher or practitioner of the technique.