Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Mathematical Neuroscience
Download Mathematical Neuroscience full books in PDF, epub, and Kindle. Read online Mathematical Neuroscience ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Mathematical Neuroscience by : Stanislaw Brzychczy
Download or read book Mathematical Neuroscience written by Stanislaw Brzychczy and published by Academic Press. This book was released on 2013-08-16 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Neuroscience is a book for mathematical biologists seeking to discover the complexities of brain dynamics in an integrative way. It is the first research monograph devoted exclusively to the theory and methods of nonlinear analysis of infinite systems based on functional analysis techniques arising in modern mathematics. Neural models that describe the spatio-temporal evolution of coarse-grained variables—such as synaptic or firing rate activity in populations of neurons —and often take the form of integro-differential equations would not normally reflect an integrative approach. This book examines the solvability of infinite systems of reaction diffusion type equations in partially ordered abstract spaces. It considers various methods and techniques of nonlinear analysis, including comparison theorems, monotone iterative techniques, a truncation method, and topological fixed point methods. Infinite systems of such equations play a crucial role in the integrative aspects of neuroscience modeling. - The first focused introduction to the use of nonlinear analysis with an infinite dimensional approach to theoretical neuroscience - Combines functional analysis techniques with nonlinear dynamical systems applied to the study of the brain - Introduces powerful mathematical techniques to manage the dynamics and challenges of infinite systems of equations applied to neuroscience modeling
Book Synopsis Mathematics for Neuroscientists by : Fabrizio Gabbiani
Download or read book Mathematics for Neuroscientists written by Fabrizio Gabbiani and published by Academic Press. This book was released on 2017-02-04 with total page 630 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics for Neuroscientists, Second Edition, presents a comprehensive introduction to mathematical and computational methods used in neuroscience to describe and model neural components of the brain from ion channels to single neurons, neural networks and their relation to behavior. The book contains more than 200 figures generated using Matlab code available to the student and scholar. Mathematical concepts are introduced hand in hand with neuroscience, emphasizing the connection between experimental results and theory. - Fully revised material and corrected text - Additional chapters on extracellular potentials, motion detection and neurovascular coupling - Revised selection of exercises with solutions - More than 200 Matlab scripts reproducing the figures as well as a selection of equivalent Python scripts
Book Synopsis Mathematical Foundations of Neuroscience by : G. Bard Ermentrout
Download or read book Mathematical Foundations of Neuroscience written by G. Bard Ermentrout and published by Springer Science & Business Media. This book was released on 2010-07-01 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book applies methods from nonlinear dynamics to problems in neuroscience. It uses modern mathematical approaches to understand patterns of neuronal activity seen in experiments and models of neuronal behavior. The intended audience is researchers interested in applying mathematics to important problems in neuroscience, and neuroscientists who would like to understand how to create models, as well as the mathematical and computational methods for analyzing them. The authors take a very broad approach and use many different methods to solve and understand complex models of neurons and circuits. They explain and combine numerical, analytical, dynamical systems and perturbation methods to produce a modern approach to the types of model equations that arise in neuroscience. There are extensive chapters on the role of noise, multiple time scales and spatial interactions in generating complex activity patterns found in experiments. The early chapters require little more than basic calculus and some elementary differential equations and can form the core of a computational neuroscience course. Later chapters can be used as a basis for a graduate class and as a source for current research in mathematical neuroscience. The book contains a large number of illustrations, chapter summaries and hundreds of exercises which are motivated by issues that arise in biology, and involve both computation and analysis. Bard Ermentrout is Professor of Computational Biology and Professor of Mathematics at the University of Pittsburgh. David Terman is Professor of Mathematics at the Ohio State University.
Book Synopsis Mathematical and Theoretical Neuroscience by : Giovanni Naldi
Download or read book Mathematical and Theoretical Neuroscience written by Giovanni Naldi and published by Springer. This book was released on 2018-03-20 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume gathers contributions from theoretical, experimental and computational researchers who are working on various topics in theoretical/computational/mathematical neuroscience. The focus is on mathematical modeling, analytical and numerical topics, and statistical analysis in neuroscience with applications. The following subjects are considered: mathematical modelling in Neuroscience, analytical and numerical topics; statistical analysis in Neuroscience; Neural Networks; Theoretical Neuroscience. The book is addressed to researchers involved in mathematical models applied to neuroscience.
Download or read book Neuroscience written by Alwyn Scott and published by Springer Science & Business Media. This book was released on 2007-12-14 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book will be of interest to anyone who wishes to know what role mathematics can play in attempting to comprehend the dynamics of the human brain. It also aims to serve as a general introduction to neuromathematics. The book gives the reader a qualitative understanding and working knowledge of useful mathematical applications to the field of neuroscience. The book is readable by those who have little knowledge of mathematics for neuroscience but are committed to begin acquiring such knowledge.
Book Synopsis Dynamical Systems in Neuroscience by : Eugene M. Izhikevich
Download or read book Dynamical Systems in Neuroscience written by Eugene M. Izhikevich and published by MIT Press. This book was released on 2010-01-22 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explains the relationship of electrophysiology, nonlinear dynamics, and the computational properties of neurons, with each concept presented in terms of both neuroscience and mathematics and illustrated using geometrical intuition. In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology. Dynamical Systems in Neuroscience presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons. It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties. The book introduces dynamical systems, starting with one- and two-dimensional Hodgkin-Huxley-type models and continuing to a description of bursting systems. Each chapter proceeds from the simple to the complex, and provides sample problems at the end. The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians. Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines. Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum—or taught by math or physics department in a way that is suitable for students of biology. This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience. An additional chapter on synchronization, with more advanced material, can be found at the author's website, www.izhikevich.com.
Book Synopsis An Introductory Course in Computational Neuroscience by : Paul Miller
Download or read book An Introductory Course in Computational Neuroscience written by Paul Miller and published by MIT Press. This book was released on 2018-10-09 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook for students with limited background in mathematics and computer coding, emphasizing computer tutorials that guide readers in producing models of neural behavior. This introductory text teaches students to understand, simulate, and analyze the complex behaviors of individual neurons and brain circuits. It is built around computer tutorials that guide students in producing models of neural behavior, with the associated Matlab code freely available online. From these models students learn how individual neurons function and how, when connected, neurons cooperate in a circuit. The book demonstrates through simulated models how oscillations, multistability, post-stimulus rebounds, and chaos can arise within either single neurons or circuits, and it explores their roles in the brain. The book first presents essential background in neuroscience, physics, mathematics, and Matlab, with explanations illustrated by many example problems. Subsequent chapters cover the neuron and spike production; single spike trains and the underlying cognitive processes; conductance-based models; the simulation of synaptic connections; firing-rate models of large-scale circuit operation; dynamical systems and their components; synaptic plasticity; and techniques for analysis of neuron population datasets, including principal components analysis, hidden Markov modeling, and Bayesian decoding. Accessible to undergraduates in life sciences with limited background in mathematics and computer coding, the book can be used in a “flipped” or “inverted” teaching approach, with class time devoted to hands-on work on the computer tutorials. It can also be a resource for graduate students in the life sciences who wish to gain computing skills and a deeper knowledge of neural function and neural circuits.
Book Synopsis Theoretical Neuroscience by : Peter Dayan
Download or read book Theoretical Neuroscience written by Peter Dayan and published by MIT Press. This book was released on 2005-08-12 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theoretical neuroscience provides a quantitative basis for describing what nervous systems do, determining how they function, and uncovering the general principles by which they operate. This text introduces the basic mathematical and computational methods of theoretical neuroscience and presents applications in a variety of areas including vision, sensory-motor integration, development, learning, and memory. The book is divided into three parts. Part I discusses the relationship between sensory stimuli and neural responses, focusing on the representation of information by the spiking activity of neurons. Part II discusses the modeling of neurons and neural circuits on the basis of cellular and synaptic biophysics. Part III analyzes the role of plasticity in development and learning. An appendix covers the mathematical methods used, and exercises are available on the book's Web site.
Book Synopsis Computational Neuroscience by : Hanspeter A Mallot
Download or read book Computational Neuroscience written by Hanspeter A Mallot and published by Springer Science & Business Media. This book was released on 2013-05-23 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Neuroscience - A First Course provides an essential introduction to computational neuroscience and equips readers with a fundamental understanding of modeling the nervous system at the membrane, cellular, and network level. The book, which grew out of a lecture series held regularly for more than ten years to graduate students in neuroscience with backgrounds in biology, psychology and medicine, takes its readers on a journey through three fundamental domains of computational neuroscience: membrane biophysics, systems theory and artificial neural networks. The required mathematical concepts are kept as intuitive and simple as possible throughout the book, making it fully accessible to readers who are less familiar with mathematics. Overall, Computational Neuroscience - A First Course represents an essential reference guide for all neuroscientists who use computational methods in their daily work, as well as for any theoretical scientist approaching the field of computational neuroscience.
Book Synopsis Principles of Computational Modelling in Neuroscience by : David Sterratt
Download or read book Principles of Computational Modelling in Neuroscience written by David Sterratt and published by Cambridge University Press. This book was released on 2023-10-05 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn to use computational modelling techniques to understand the nervous system at all levels, from ion channels to networks.
Book Synopsis Models of the Mind by : Grace Lindsay
Download or read book Models of the Mind written by Grace Lindsay and published by Bloomsbury Publishing. This book was released on 2021-03-04 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: The human brain is made up of 85 billion neurons, which are connected by over 100 trillion synapses. For more than a century, a diverse array of researchers searched for a language that could be used to capture the essence of what these neurons do and how they communicate – and how those communications create thoughts, perceptions and actions. The language they were looking for was mathematics, and we would not be able to understand the brain as we do today without it. In Models of the Mind, author and computational neuroscientist Grace Lindsay explains how mathematical models have allowed scientists to understand and describe many of the brain's processes, including decision-making, sensory processing, quantifying memory, and more. She introduces readers to the most important concepts in modern neuroscience, and highlights the tensions that arise when the abstract world of mathematical modelling collides with the messy details of biology. Each chapter of Models of the Mind focuses on mathematical tools that have been applied in a particular area of neuroscience, progressing from the simplest building block of the brain – the individual neuron – through to circuits of interacting neurons, whole brain areas and even the behaviours that brains command. In addition, Grace examines the history of the field, starting with experiments done on frog legs in the late eighteenth century and building to the large models of artificial neural networks that form the basis of modern artificial intelligence. Throughout, she reveals the value of using the elegant language of mathematics to describe the machinery of neuroscience.
Book Synopsis An Introduction to Modeling Neuronal Dynamics by : Christoph Börgers
Download or read book An Introduction to Modeling Neuronal Dynamics written by Christoph Börgers and published by Springer. This book was released on 2017-04-17 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended as a text for a one-semester course on Mathematical and Computational Neuroscience for upper-level undergraduate and beginning graduate students of mathematics, the natural sciences, engineering, or computer science. An undergraduate introduction to differential equations is more than enough mathematical background. Only a slim, high school-level background in physics is assumed, and none in biology. Topics include models of individual nerve cells and their dynamics, models of networks of neurons coupled by synapses and gap junctions, origins and functions of population rhythms in neuronal networks, and models of synaptic plasticity. An extensive online collection of Matlab programs generating the figures accompanies the book.
Book Synopsis Fundamentals of Computational Neuroscience by : Thomas Trappenberg
Download or read book Fundamentals of Computational Neuroscience written by Thomas Trappenberg and published by Oxford University Press. This book was released on 2010 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: The new edition of Fundamentals of Computational Neuroscience build on the success and strengths of the first edition. Completely redesigned and revised, it introduces the theoretical foundations of neuroscience with a focus on the nature of information processing in the brain.
Book Synopsis Neuronal Dynamics by : Wulfram Gerstner
Download or read book Neuronal Dynamics written by Wulfram Gerstner and published by Cambridge University Press. This book was released on 2014-07-24 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.
Book Synopsis Mathematical Methods in Biology and Neurobiology by : Jürgen Jost
Download or read book Mathematical Methods in Biology and Neurobiology written by Jürgen Jost and published by Springer Science & Business Media. This book was released on 2014-02-13 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical models can be used to meet many of the challenges and opportunities offered by modern biology. The description of biological phenomena requires a range of mathematical theories. This is the case particularly for the emerging field of systems biology. Mathematical Methods in Biology and Neurobiology introduces and develops these mathematical structures and methods in a systematic manner. It studies: • discrete structures and graph theory • stochastic processes • dynamical systems and partial differential equations • optimization and the calculus of variations. The biological applications range from molecular to evolutionary and ecological levels, for example: • cellular reaction kinetics and gene regulation • biological pattern formation and chemotaxis • the biophysics and dynamics of neurons • the coding of information in neuronal systems • phylogenetic tree reconstruction • branching processes and population genetics • optimal resource allocation • sexual recombination • the interaction of species. Written by one of the most experienced and successful authors of advanced mathematical textbooks, this book stands apart for the wide range of mathematical tools that are featured. It will be useful for graduate students and researchers in mathematics and physics that want a comprehensive overview and a working knowledge of the mathematical tools that can be applied in biology. It will also be useful for biologists with some mathematical background that want to learn more about the mathematical methods available to deal with biological structures and data.
Author :Colleen Crangle Publisher :Center for the Study of Language and Information Publica Tion ISBN 13 :9781575867441 Total Pages :0 pages Book Rating :4.8/5 (674 download)
Book Synopsis Foundations and Methods from Mathematics to Neuroscience by : Colleen Crangle
Download or read book Foundations and Methods from Mathematics to Neuroscience written by Colleen Crangle and published by Center for the Study of Language and Information Publica Tion. This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: During his long and continuing scholarly career, Patrick Suppes contributed significantly both to the sciences and to their philosophies. The volume consists of papers by an international group of Suppes colleagues, collaborators, and students in many of the areas of his expertise, building on or adding to his insights. Michael Friedman offers an overview of Suppes accomplishments and of his unique perspective on the relation between science and philosophy. Paul Humphreys, Stephen Hartmann, and Tom Ryckman present essays in the philosophy of physics. Jens-Erik Fenstad, Harvey Friedman, and Jaako Hintikka consider problems in the foundations of mathematics, while the late Duncan Luce, Jean-Claude Falmagne, Brian Skyrms, and Hannes Leitgeb have contributed essays in theory of measurement, decision theory and probability. Foundations of economics and political theory are addressed by Adolfo Garcia de la Sienra, Russell Hardin, and Kenneth Arrow. Psychology, language, and philosophy of language are addressed by Elizabeth Loftus, Anne Fagot-Largeault, Willem Levelt, Dagfinn Follesdal, and Marcos Perreau-Guimares and some of Suppes most recent research in neurobiology is addressed in essays by Colleen Crangle, Acadio de Barros and Claudio Carvalhes. Finally Nancy Cartwright and Alexandre Marcelles consider the alignment (or misalignment) of method and policy. Each of the essays is accompanied by a response from Suppes."
Book Synopsis Mathematical Foundations of Neuroscience by : G. Bard Ermentrout
Download or read book Mathematical Foundations of Neuroscience written by G. Bard Ermentrout and published by Springer Science & Business Media. This book was released on 2010-07-08 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Arising from several courses taught by the authors, this book provides a needed overview illustrating how dynamical systems and computational analysis have been used in understanding the types of models that come out of neuroscience.