Mathematical Modelling of Dose Planning in High Dose-Rate Brachytherapy

Download Mathematical Modelling of Dose Planning in High Dose-Rate Brachytherapy PDF Online Free

Author :
Publisher : Linköping University Electronic Press
ISBN 13 : 9176851311
Total Pages : 63 pages
Book Rating : 4.1/5 (768 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Modelling of Dose Planning in High Dose-Rate Brachytherapy by : Björn Morén

Download or read book Mathematical Modelling of Dose Planning in High Dose-Rate Brachytherapy written by Björn Morén and published by Linköping University Electronic Press. This book was released on 2019-04-24 with total page 63 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cancer is a widespread type of diseases that each year affects millions of people. It is mainly treated by chemotherapy, surgery or radiation therapy, or a combination of them. One modality of radiation therapy is high dose-rate brachytherapy, used in treatment of for example prostate cancer and gynecologic cancer. Brachytherapy is an invasive treatment in which catheters (hollow needles) or applicators are used to place the highly active radiation source close to or within a tumour. The treatment planning problem, which can be modelled as a mathematical optimization problem, is the topic of this thesis. The treatment planning includes decisions on how many catheters to use and where to place them as well as the dwell times for the radiation source. There are multiple aims with the treatment and these are primarily to give the tumour a radiation dose that is sufficiently high and to give the surrounding healthy tissue and organs (organs at risk) a dose that is sufficiently low. Because these aims are in conflict, modelling the treatment planning gives optimization problems which essentially are multiobjective. To evaluate treatment plans, a concept called dosimetric indices is commonly used and they constitute an essential part of the clinical treatment guidelines. For the tumour, the portion of the volume that receives at least a specified dose is of interest while for an organ at risk it is rather the portion of the volume that receives at most a specified dose. The dosimetric indices are derived from the dose-volume histogram, which for each dose level shows the corresponding dosimetric index. Dose-volume histograms are commonly used to visualise the three-dimensional dose distribution. The research focus of this thesis is mathematical modelling of the treatment planning and properties of optimization models explicitly including dosimetric indices, which the clinical treatment guidelines are based on. Modelling dosimetric indices explicitly yields mixedinteger programs which are computationally demanding to solve. The computing time of the treatment planning is of clinical relevance as the planning is typically conducted while the patient is under anaesthesia. Research topics in this thesis include both studying properties of models, extending and improving models, and developing new optimization models to be able to take more aspects into account in the treatment planning. There are several advantages of using mathematical optimization for treatment planning in comparison to manual planning. First, the treatment planning phase can be shortened compared to the time consuming manual planning. Secondly, also the quality of treatment plans can be improved by using optimization models and algorithms, for example by considering more of the clinically relevant aspects. Finally, with the use of optimization algorithms the requirements of experience and skill level for the planners are lower. This thesis summary contains a literature review over optimization models for treatment planning, including the catheter placement problem. How optimization models consider the multiobjective nature of the treatment planning problem is also discussed.

Treatment Planning of High Dose-Rate Brachytherapy - Mathematical Modelling and Optimization

Download Treatment Planning of High Dose-Rate Brachytherapy - Mathematical Modelling and Optimization PDF Online Free

Author :
Publisher : Linköping University Electronic Press
ISBN 13 : 9179297382
Total Pages : 53 pages
Book Rating : 4.1/5 (792 download)

DOWNLOAD NOW!


Book Synopsis Treatment Planning of High Dose-Rate Brachytherapy - Mathematical Modelling and Optimization by : Björn Morén

Download or read book Treatment Planning of High Dose-Rate Brachytherapy - Mathematical Modelling and Optimization written by Björn Morén and published by Linköping University Electronic Press. This book was released on 2021-01-12 with total page 53 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cancer is a widespread class of diseases that each year affects millions of people. It is mostly treated with chemotherapy, surgery, radiation therapy, or combinations thereof. High doserate (HDR) brachytherapy (BT) is one modality of radiation therapy, which is used to treat for example prostate cancer and gynecologic cancer. In BT, catheters (i.e., hollow needles) or applicators are used to place a single, small, but highly radioactive source of ionizing radiation close to or within a tumour, at dwell positions. An emerging technique for HDR BT treatment is intensity modulated brachytherapy (IMBT), in which static or dynamic shields are used to further shape the dose distribution, by hindering the radiation in certain directions. The topic of this thesis is the application of mathematical optimization to model and solve the treatment planning problem. The treatment planning includes decisions on catheter placement, that is, how many catheters to use and where to place them, as well as decisions for dwell times. Our focus is on the latter decisions. The primary treatment goals are to give the tumour a sufficiently high radiation dose while limiting the dose to the surrounding healthy organs, to avoid severe side effects. Because these aims are typically in conflict, optimization models of the treatment planning problem are inherently multiobjective. Compared to manual treatment planning, there are several advantages of using mathematical optimization for treatment planning. First, the optimization of treatment plans requires less time, compared to the time-consuming manual planning. Secondly, treatment plan quality can be improved by using optimization models and algorithms. Finally, with the use of sophisticated optimization models and algorithms the requirements of experience and skill level for the planners are lower. The use of optimization for treatment planning of IMBT is especially important because the degrees of freedom are too many for manual planning. The contributions of this thesis include the study of properties of treatment planning models, suggestions for extensions and improvements of proposed models, and the development of new optimization models that take clinically relevant, but uncustomary aspects, into account in the treatment planning. A common theme is the modelling of constraints on dosimetric indices, each of which is a restriction on the portion of a volume that receives at least a specified dose, or on the lowest dose that is received by a portion of a volume. Modelling dosimetric indices explicitly yields mixed-integer programs which are computationally demanding to solve. We have therefore investigated approximations of dosimetric indices, for example using smooth non-linear functions or convex functions. Contributions of this thesis are also a literature review of proposed treatment planning models for HDR BT, including mathematical analyses and comparisons of models, and a study of treatment planning for IMBT, which shows how robust optimization can be used to mitigate the risks from rotational errors in the shield placement. Cancer är en grupp av sjukdomar som varje år drabbar miljontals människor. De vanligaste behandlingsformerna är cellgifter, kirurgi, strålbehandling eller en kombination av dessa. I denna avhandling studeras högdosrat brachyterapi (HDR BT), vilket är en form av strålbehandling som till exempel används vid behandling av prostatacancer och gynekologisk cancer. Vid brachyterapibehandling används ihåliga nålar eller applikatorer för att placera en millimeterstor strålkälla antingen inuti eller intill en tumör. I varje nål finns det ett antal så kallade dröjpositioner där strålkällan kan stanna en viss tid för att bestråla den omkringliggande vävnaden, i alla riktningar. Genom att välja lämpliga tider för dröjpositionerna kan dosfördelningen formas efter patientens anatomi. Utöver HDR BT studeras också den nya tekniken intensitetsmodulerad brachyterapi (IMBT) vilket är en variation på HDR BT där skärmning används för att minska strålningen i vissa riktningar vilket gör det möjligt att forma dosfördelningen bättre. Planeringen av en behandling med HDR BT omfattar hur många nålar som ska användas, var de ska placeras samt hur länge strålkällan ska stanna i de olika dröjpositionerna. För HDR BT kan dessa vara flera hundra stycken medan det för IMBT snarare handlar om tusentals möjliga kombinationer av dröjpositioner och inställningar av skärmarna. Planeringen resulterar i en dosplan som beskriver hur hög stråldos som tumören och intilliggande frisk vävnad och riskorgan utsätts för. Dosplaneringen kan formuleras som ett matematiskt optimeringsproblem vilket är ämnet för avhandlingen. De övergripande målsättningarna för behandlingen är att ge en tillräckligt hög stråldos till tumören, för att döda alla cancerceller, samt att undvika att bestråla riskorgan eftersom det kan ge allvarliga biverkningar. Då alla målsättningarna inte samtidigt kan uppnås fullt ut så fås optimeringsproblem där flera målsättningar behöver prioriteras mot varandra. Utöver att dosplanen uppfyller kliniska behandlingsriktlinjer så är också tidsaspekten av planeringen viktig eftersom det är vanligt att den görs medan patienten är bedövad eller sövd. Vid utvärdering av en dosplan används dos-volymmått. För en tumör anger ett dosvolymmått hur stor andel av tumören som får en stråldos som är högre än en specificerad nivå. Dos-volymmått utgör en viktig del av målen för dosplaner som tas upp i kliniska behandlingsriktlinjer och ett exempel på ett sådant mål vid behandling av prostatacancer är att 95% av prostatans volym ska få en stråldos som är minst den föreskrivna dosen. Dos-volymmått utläses ur de kliniskt betydelsefulla dos-volym histogrammen som för varje stråldosnivå anger motsvarande volym som erhåller den dosen. En fördel med att använda matematisk optimering för dosplanering är att det kan spara tid jämfört med manuell planering. Med väl utvecklade modeller så finns det också möjlighet att skapa bättre dosplaner, till exempel genom att riskorganen nås av en lägre dos men med bibehållen dos till tumören. Vidare så finns det även fördelar med en process som inte är lika personberoende och som inte kräver erfarenhet i lika stor utsträckning som manuell dosplanering i dagsläget gör. Vid IMBT är det dessutom så många frihetsgrader att manuell planering i stort sett blir omöjligt. I avhandlingen ligger fokus på hur dos-volymmått kan användas och modelleras explicit i optimeringsmodeller, så kallade dos-volymmodeller. Detta omfattar såväl analys av egenskaper hos befintliga modeller, utvidgningar av tidigare använda modeller samt utveckling av nya optimeringsmodeller. Eftersom dos-volymmodeller modelleras som heltalsproblem, vilka är beräkningskrävande att lösa, så är det också viktigt att utveckla algoritmer som kan lösa dem tillräckligt snabbt för klinisk användning. Ett annat mål för modellutvecklingen är att kunna ta hänsyn till fler kriterier som är kliniskt relevanta men som inte ingår i dos-volymmodeller. En sådan kategori av mått är hur dosen är fördelad rumsligt, exempelvis att volymen av sammanhängande områden som får en alldeles för hög dos ska vara liten. Sådana områden går dock inte att undvika helt eftersom det är typiskt för dosplaner för brachyterapi att stråldosen fördelar sig ojämnt, med väldigt höga doser till små volymer precis intill strålkällorna. Vidare studeras hur små fel i inställningarna av skärmningen i IMBT påverkar dosplanens kvalitet och de olika utvärderingsmått som används kliniskt. Robust optimering har använts för att säkerställa att en dosplan tas fram som är robust sett till dessa möjliga fel i hur skärmningen är placerad. Slutligen ges en omfattande översikt över optimeringsmodeller för dosplanering av HDR BT och speciellt hur optimeringsmodellerna hanterar de motstridiga målsättningarna.

Radiobiological Modelling in Radiation Oncology

Download Radiobiological Modelling in Radiation Oncology PDF Online Free

Author :
Publisher : British Inst of Radiology
ISBN 13 : 090574960X
Total Pages : 304 pages
Book Rating : 4.9/5 (57 download)

DOWNLOAD NOW!


Book Synopsis Radiobiological Modelling in Radiation Oncology by : Roger G. Dale

Download or read book Radiobiological Modelling in Radiation Oncology written by Roger G. Dale and published by British Inst of Radiology. This book was released on 2007 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: The move towards individually-optimised treatments, using knowledge of normal tissue and tumour radiosensitivity, proliferation rates, etc, in combination with three-dimensional planning, will need mathematical modelling to achieve its full potential. This modelling process will also be capable of helping develop a rational and cost-effective use of resources.Amongst radiation oncologists and medical physicists there is a need for a greater understanding of the scope, applications and limitations of radiobiological modelling, particularly in complex situations that include multiple treatment variables, the respective influence of which are difficult to separate out by randomised trials without using radiobiologically-based analysis.In future there will be increasing use of modelling in practical situations, including treatment gap corrections, normal tissue tolerance predictions, optimisation of therapy determined by predictive assays, multi-modality schedule design, the simulation of clinical trials, testing contemporaneous medico-legal problems and teaching general principals of radiotherapy.

Integer Programs for High Dose Rate Brachytherapy Needle and Dose Planning that Directly Optimize Clinical Objectives

Download Integer Programs for High Dose Rate Brachytherapy Needle and Dose Planning that Directly Optimize Clinical Objectives PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 272 pages
Book Rating : 4.:/5 (839 download)

DOWNLOAD NOW!


Book Synopsis Integer Programs for High Dose Rate Brachytherapy Needle and Dose Planning that Directly Optimize Clinical Objectives by : Ko-Ay Timmy Siauw

Download or read book Integer Programs for High Dose Rate Brachytherapy Needle and Dose Planning that Directly Optimize Clinical Objectives written by Ko-Ay Timmy Siauw and published by . This book was released on 2012 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: High dose rate (HDR) brachytherapy is a radiation therapy for cancer in the prostate, cervix, breast, head, and neck, including other sites. In HDR brachytherapy, hollow needles are inserted or placed near the cancer site. Radiation is delivered to the patient by a radioactive source which is sequentially threaded through the needles. The dose distribution is controlled by altering the dwell times, the time spent at pre-defined positions on the needles. HDR brachytherapy has a 90\% cancer-free survival rate at 12 years when used for the treatment of prostate cancer, the focus of this dissertation. However, it can have serious negative side effects such as impotence and incontinence, which are caused by excess radiation exposure and needle puncture of healthy organs near the prostate, or organs at risk (OAR). A major goal of the field is to reduce side effects of HDR brachytherapy without compromising its therapeutic effectiveness. Towards this goal, this dissertation seeks to use mathematical optimization techniques to compute radiation dose distributions which meet clinical objectives and needle configurations which induce less trauma in the patient. We develop planning tools that directly optimize the dose distributions towards the RTOG-0321 standard dose objectives set by the Radiation Therapy Oncology Group and needle configurations which avoid puncturing OAR and use fewer needles than common practice. Specifically, this dissertation makes the following contributions. Contributions: 1. We developed Inverse Planning by Integer Program (IPIP), the first integer program which directly optimizes dosimetric indices, the standard metrics used to evaluate HDR brachytherapy dose distributions. However, we showed that for anatomy data taken from patients previously treated at the UCSF clinic and the RTOG-0321 dose objectives, CPLEX could not solve IPIP within 30 minutes of computing time using its default parameters. 2. We developed a heuristic algorithm, IPIP-H, which uses two linear programs to compute feasible solutions for IPIP. Thus, it is a polynomial-time heuristic algorithm for IPIP. We used IPIP-H to compute dose plans for the same patients as IPIP. We showed that IPIP-H could compute a dose plan for each patient which met all the dose objectives specified by the RTOG-0321 protocol in less than 30 seconds of computing time (avg. 13 seconds). The solutions computed from IPIP-H were always feasible for IPIP and were within 5% of the optimal solution. We compared IPIP-H to Inverse Planning Simulated Annealing (IPSA), a dose planning model which is clinically deployed and has been used worldwide for over a decade. IPSA was not able to compute a dose plan which met all the dose objectives for any of the patients in our data set using its standard class solution. Therefore, IPSA would require iterations of manual fine tuning of its optimization parameters until a feasible dose plan was found. IPIP-H would not require iteration. 3. We formulated the problem of positioning HDR brachytherapy needles as a spatial coverage problem: given a large candidate set of needles for insertion, anatomy data, and a user parameter, delta, find the smallest candidate needle subset such that the minimum distance between any point in the prostate and a needle in the chosen set is less than delta. We showed that this problem could be represented as a set cover integer program. 4. We developed Needle Planning by Integer Program (NPIP), an algorithm which generates a set of candidate needles represented by skew-line segments, solves an integer program which chooses a candidate needle subset that covers the prostate according to the user-parameter, delta, and verifies that the final needle configuration meets dose objectives by computing a dose plan for it using IPIP. NPIP uses a candidate needle set which is approximately 10 times larger than considered with Hyrbid Inverse Planning Optimization (HIPO), the only other fully computerized needle planning system for HDR brachytherapy known to us. By construction, NPIP avoids choosing needles which penetrate OAR and needles which collide with each other. We used NPIP to compute needle configurations for patients previously treated at the UCSF clinic and compared the computed needle configurations to those implanted by the physician. NPIP could find needle configurations which met the RTOG-0321 dose objectives and used 10 or fewer needles; the physician used 16 needles. NPIP always computed a needle configuration that avoided puncturing the penile bulb; the average number of punctures made by the physician was 5. NPIP required an average of 5 minutes of computing time, but there was a wide range of run times, up to almost one hour. We also conducted a sensitivity analysis of NPIP-generated needle configurations to placement errors on the order expected from current needle insertion robots, which was about 2 mm. We showed that, although dose objectives could be met with 10 or fewer needles, 16 needles were required to meet dose objectives robustly. 5. We designed and implemented the first end-to-end robotic HDR brachytherapy experiment. Our experiment utilized Contributions 1 through 4, and Acubot-RND, a needle insertion robot specialized for needle insertion. We planned and executed NPIP-generated needle configurations in a fully equipped brachytherapy environment on two anatomically-correct gelatin phantoms. There were non-trivial placement errors between the planned needle configuration and the implanted needle configuration. We separated the error into systematic error and random error. We computed the systematic error as the rigid least squares fit between points regularly sampled along the needles in the planned and actual needle configuration. The total RMS error between the planned and actual needle configuration was 3 mm for the first phantom and 5 mm for the second phantom. We computed the random error as the total RMS error between the planned and actual needle configuration after the systematic error was removed. The random error was 1.4 mm for the first phantom and 2.5 mm for the second phantom. Our random errors were close to the placement error of current needle insertion robots which have a more sophisticated calibration device. Although there were discrepancies between the planned and actual needle configuration, we showed that our end-to-end robotic experiment could execute the planned needle configurations with sufficient accuracy to meet the RTOG-0321 dose objectives and avoid puncturing OAR. We compared the needle configurations executed by our robotic workflow with a needle configuration executed by a world-class brachytherapist, who also used 16 needles, met dose objectives and avoided puncturing OAR. Therefore, the needle configurations executed in our experiment are comparable to an expert physician. In summary, this dissertation has developed mathematical methods which improve the planning of HDR brachytherapy dose distributions and needle configurations. Dose distributions can be directly optimized towards the standard RTOG-0321 dosimetric protocol, or other dose objectives based on constraining dosimetric indices, and needle configurations can be computed which meet dose objectives, use fewer needles than standard practice, and avoid puncturing OAR. We have demonstrated the feasibility of using IPIP and NPIP in a clinical environment using a robotic clinical workflow. These planning methods are a significant step towards reducing side effect of brachytherapy. We leave a clinical translation of these tools to determine if, and the extent, side effects are actually reduced.

Simulation-based Low-dose-rate Brachytherapy Treatment Planning

Download Simulation-based Low-dose-rate Brachytherapy Treatment Planning PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Simulation-based Low-dose-rate Brachytherapy Treatment Planning by : Katharina I. Jerg

Download or read book Simulation-based Low-dose-rate Brachytherapy Treatment Planning written by Katharina I. Jerg and published by . This book was released on 2024* with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Emerging Technologies in Brachytherapy

Download Emerging Technologies in Brachytherapy PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498736548
Total Pages : 416 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Emerging Technologies in Brachytherapy by : William Y. Song

Download or read book Emerging Technologies in Brachytherapy written by William Y. Song and published by CRC Press. This book was released on 2017-05-19 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: Brachytherapy is continuously advancing. Years of accumulated experience have led to clinical evidence of its benefit in numerous clinical sites such as gynecological, prostate, breast, rectum, ocular, and many other cancers. Brachytherapy continues to expand in its scope of practice and complexity, driven by strong academic and commercial research, by advances in competing modalities, and due to the diversity in the political and economic landscape. It is a true challenge for practicing professionals and students to readily grasp the overarching trends of the field, especially of those technologies and innovative practices that are not yet established but are certainly on the rise. Addressing this challenge, Emerging Technologies in Brachytherapy presents a comprehensive collection of chapters on the latest trending/emerging technologies and expert opinions. It is divided into five broad sections: Section I: Physics of Brachytherapy Section II: Imaging for Brachytherapy Guidance Section III: Brachytherapy Suites Section IV: Is Brachytherapy a Competitive Modality? Section V: Vision 20/20: Industry Perspective Each section has a carefully selected collection of chapters, which covers the spectrum of topics in comprehensive detail. By drawing on recognized experts and key opinion leaders from academia and commercial sectors worldwide (100+ contributors), Emerging Technologies in Brachytherapy provides readers with a wealth of relevant information needed to comprehend the rapidly advancing technologies and trends of today and the prospects for the future.

Gynecologic Radiation Therapy

Download Gynecologic Radiation Therapy PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540689583
Total Pages : 301 pages
Book Rating : 4.5/5 (46 download)

DOWNLOAD NOW!


Book Synopsis Gynecologic Radiation Therapy by : Akila N. Viswanathan

Download or read book Gynecologic Radiation Therapy written by Akila N. Viswanathan and published by Springer Science & Business Media. This book was released on 2010-10-17 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent advances in the treatment of gynecologic malignancies led to a new worldwide consensus to introduce image guidance to gynecologic radiation therapy, particularly to brachytherapy. The book summarizes the changed practice of management: treatment planning for cervical cancer, not modified for over 60 years, has been shifted to an image-based approach, endometrial cancer management with an increase in the use of chemotherapy and vaginal brachytherapy, and vaginal cancer therapy including image guidance and high-dose delivery with IMRT.

Radiation Therapy Techniques for Gynecological Cancers

Download Radiation Therapy Techniques for Gynecological Cancers PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030014436
Total Pages : 276 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Radiation Therapy Techniques for Gynecological Cancers by : Kevin Albuquerque

Download or read book Radiation Therapy Techniques for Gynecological Cancers written by Kevin Albuquerque and published by Springer. This book was released on 2019-02-19 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a practical guide to the use of modern radiation therapy techniques in women with gynecological cancers. Step-by-step instruction is provided on simulation, contouring, and treatment planning and delivery for cancers of the cervix, endometrium, vagina, and vulva. Beyond external beam radiation delivery, full details are presented on three-dimensional brachytherapy at all sites for which it is applicable. Moreover, in-depth guidance is offered on the various advanced techniques of radiation delivery, including intensity-modulated radiation therapy, image guidance for external beam and brachytherapy, and stereotactic body radiotherapy. Radiation therapy is a critical component of the multidisciplinary management of gynecological tumors. With modern technology, both external beam radiation and brachytherapy can be delivered in a highly conformal way. This requires precise contouring and accurate planning techniques. In clearly describing the indications for and the delivery of quality radiation therapy for gynecological tumors, this book will benefit radiation oncologists, medical physicists, medical dosimetrists, radiation therapists, and radiotherapy residents.

Practical Radiation Oncology Physics E-Book

Download Practical Radiation Oncology Physics E-Book PDF Online Free

Author :
Publisher : Elsevier Health Sciences
ISBN 13 : 0323263755
Total Pages : 400 pages
Book Rating : 4.3/5 (232 download)

DOWNLOAD NOW!


Book Synopsis Practical Radiation Oncology Physics E-Book by : Sonja Dieterich

Download or read book Practical Radiation Oncology Physics E-Book written by Sonja Dieterich and published by Elsevier Health Sciences. This book was released on 2015-06-24 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perfect for radiation oncologists, medical physicists, and residents in both fields, Practical Radiation Oncology Physics provides a concise and practical summary of the current practice standards in therapeutic medical physics. A companion to the fourth edition of Clinical Radiation Oncology, by Drs. Leonard Gunderson and Joel Tepper, this indispensable guide helps you ensure a current, state-of-the art clinical practice. Covers key topics such as relative and in-vivo dosimetry, imaging and clinical imaging, stereotactic body radiation therapy, and brachytherapy. Describes technical aspects and patient-related aspects of current clinical practice. Offers key practice guideline recommendations from professional societies throughout — including AAPM, ASTRO, ABS, ACR, IAEA, and others. Includes therapeutic applications of x-rays, gamma rays, electron and charged particle beams, neutrons, and radiation from sealed radionuclide sources, plus the equipment associated with their production, use, measurement, and evaluation. Features a "For the Physician" box in each chapter, which summarizes the key points with the most impact on the quality and safety of patient care. Provides a user-friendly appendix with annotated compilations of all relevant recommendation documents. Medicine eBook is accessible on a variety of devices.

Recent advances in cervical cancer radiotherapy

Download Recent advances in cervical cancer radiotherapy PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2832517986
Total Pages : 113 pages
Book Rating : 4.8/5 (325 download)

DOWNLOAD NOW!


Book Synopsis Recent advances in cervical cancer radiotherapy by : Gene A. Cardarelli

Download or read book Recent advances in cervical cancer radiotherapy written by Gene A. Cardarelli and published by Frontiers Media SA. This book was released on 2023-03-23 with total page 113 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Cumulated Index Medicus

Download Cumulated Index Medicus PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 1850 pages
Book Rating : 4.3/5 (243 download)

DOWNLOAD NOW!


Book Synopsis Cumulated Index Medicus by :

Download or read book Cumulated Index Medicus written by and published by . This book was released on 1997 with total page 1850 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Operations Research Proceedings 2017

Download Operations Research Proceedings 2017 PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319899201
Total Pages : 758 pages
Book Rating : 4.3/5 (198 download)

DOWNLOAD NOW!


Book Synopsis Operations Research Proceedings 2017 by : Natalia Kliewer

Download or read book Operations Research Proceedings 2017 written by Natalia Kliewer and published by Springer. This book was released on 2018-05-25 with total page 758 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers a selection of peer-reviewed papers presented at the International Conference on Operations Research (OR 2017), which was held at Freie Universität Berlin, Germany on September 6-8, 2017. More than 800 scientists, practitioners and students from mathematics, computer science, business/economics and related fields attended the conference and presented more than 500 papers in parallel topic streams, as well as special award sessions. The main theme of the conference and its proceedings was "Decision Analytics for the Digital Economy."

Intensity-Modulated Radiation Therapy

Download Intensity-Modulated Radiation Therapy PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 4431554866
Total Pages : 470 pages
Book Rating : 4.4/5 (315 download)

DOWNLOAD NOW!


Book Synopsis Intensity-Modulated Radiation Therapy by : Yasumasa Nishimura

Download or read book Intensity-Modulated Radiation Therapy written by Yasumasa Nishimura and published by Springer. This book was released on 2015-04-16 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Successful clinical use of intensity-modulated radiation therapy (IMRT) represents a significant advance in radiation oncology. Because IMRT can deliver high-dose radiation to a target with a reduced dose to the surrounding organs, it can improve the local control rate and reduce toxicities associated with radiation therapy. Since IMRT began being used in the mid-1990s, a large volume of clinical evidence of the advantages of IMRT has been collected. However, treatment planning and quality assurance (QA) of IMRT are complicated and difficult for the clinician and the medical physicist. This book, by authors renowned for their expertise in their fields, provides cumulative clinical evidence and appropriate techniques for IMRT for the clinician and the physicist. Part I deals with the foundations and techniques, history, principles, QA, treatment planning, radiobiology and related aspects of IMRT. Part II covers clinical applications with several case studies, describing contouring and dose distribution with clinical results along with descriptions of indications and a review of clinical evidence for each tumor site. The information presented in this book serves as a valuable resource for the practicing clinician and physicist.

Decision Analytics and Optimization in Disease Prevention and Treatment

Download Decision Analytics and Optimization in Disease Prevention and Treatment PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118960122
Total Pages : 406 pages
Book Rating : 4.1/5 (189 download)

DOWNLOAD NOW!


Book Synopsis Decision Analytics and Optimization in Disease Prevention and Treatment by : Nan Kong

Download or read book Decision Analytics and Optimization in Disease Prevention and Treatment written by Nan Kong and published by John Wiley & Sons. This book was released on 2018-03-13 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic review of the most current decision models and techniques for disease prevention and treatment Decision Analytics and Optimization in Disease Prevention and Treatment offers a comprehensive resource of the most current decision models and techniques for disease prevention and treatment. With contributions from leading experts in the field, this important resource presents information on the optimization of chronic disease prevention, infectious disease control and prevention, and disease treatment and treatment technology. Designed to be accessible, in each chapter the text presents one decision problem with the related methodology to showcase the vast applicability of operations research tools and techniques in advancing medical decision making. This vital resource features the most recent and effective approaches to the quickly growing field of healthcare decision analytics, which involves cost-effectiveness analysis, stochastic modeling, and computer simulation. Throughout the book, the contributors discuss clinical applications of modeling and optimization techniques to assist medical decision making within complex environments. Accessible and authoritative, Decision Analytics and Optimization in Disease Prevention and Treatment: Presents summaries of the state-of-the-art research that has successfully utilized both decision analytics and optimization tools within healthcare operations research Highlights the optimization of chronic disease prevention, infectious disease control and prevention, and disease treatment and treatment technology Includes contributions by well-known experts from operations researchers to clinical researchers, and from data scientists to public health administrators Offers clarification on common misunderstandings and misnomers while shedding light on new approaches in this growing area Designed for use by academics, practitioners, and researchers, Decision Analytics and Optimization in Disease Prevention and Treatment offers a comprehensive resource for accessing the power of decision analytics and optimization tools within healthcare operations research.

Brachytherapy Physics

Download Brachytherapy Physics PDF Online Free

Author :
Publisher : Medical Physics Publishing Corporation
ISBN 13 : 9781930524248
Total Pages : 965 pages
Book Rating : 4.5/5 (242 download)

DOWNLOAD NOW!


Book Synopsis Brachytherapy Physics by : Bruce Thomadsen

Download or read book Brachytherapy Physics written by Bruce Thomadsen and published by Medical Physics Publishing Corporation. This book was released on 2005 with total page 965 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is organized into 6 sections: Fundamentals; Dosimetry; Interstitial Fundamentals; Interstitial Applications; Intercavitary Applications for Gynecological Cancer, and Unconventiional Delivery Systems. The book includes a CD-ROM containing an electronic version of the book (with many illustrations in full color) plus a compiled list of references.

Comprehensive Brachytherapy

Download Comprehensive Brachytherapy PDF Online Free

Author :
Publisher : Taylor & Francis
ISBN 13 : 1439844992
Total Pages : 523 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Comprehensive Brachytherapy by : Jack Venselaar

Download or read book Comprehensive Brachytherapy written by Jack Venselaar and published by Taylor & Francis. This book was released on 2012-11-08 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern brachytherapy is one of the most important oncological treatment modalities requiring an integrated approach that utilizes new technologies, advanced clinical imaging facilities, and a thorough understanding of the radiobiological effects on different tissues, the principles of physics, dosimetry techniques and protocols, and clinical expertise. A complete overview of the field, Comprehensive Brachytherapy: Physical and Clinical Aspects is a landmark publication, presenting a detailed account of the underlying physics, design, and implementation of the techniques, along with practical guidance for practitioners. Bridging the gap between research and application, this single source brings together the technological basis, radiation dosimetry, quality assurance, and fundamentals of brachytherapy. In addition, it presents discussion of the most recent clinical practice in brachytherapy including prostate, gynecology, breast, and other clinical treatment sites. Along with exploring new clinical protocols, it discusses major advances in imaging, robotics, dosimetry, Monte Carlo-based dose calculation, and optimization.

Radiation Therapy Physics

Download Radiation Therapy Physics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662031078
Total Pages : 468 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Radiation Therapy Physics by : Alfred R. Smith

Download or read book Radiation Therapy Physics written by Alfred R. Smith and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to provide a uniquely comprehensive source of information on the entire field of radiation therapy physics. The very significant advances in imaging, computational, and accelerator technologies receive full consideration, as do such topics as the dosimetry of radiolabeled antibodies and dose calculation models. The scope of the book and the expertise of the authors make it essential reading for interested physicians and physicists and for radiation dosimetrists.