Mastering MLOps Architecture: From Code to Deployment

Download Mastering MLOps Architecture: From Code to Deployment PDF Online Free

Author :
Publisher : BPB Publications
ISBN 13 : 9355519494
Total Pages : 284 pages
Book Rating : 4.3/5 (555 download)

DOWNLOAD NOW!


Book Synopsis Mastering MLOps Architecture: From Code to Deployment by : Raman Jhajj

Download or read book Mastering MLOps Architecture: From Code to Deployment written by Raman Jhajj and published by BPB Publications. This book was released on 2023-12-12 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Harness the power of MLOps for managing real time machine learning project cycle KEY FEATURES ● Comprehensive coverage of MLOps concepts, architecture, tools and techniques. ● Practical focus on building end-to-end ML Systems for Continual Learning with MLOps. ● Actionable insights on CI/CD, monitoring, continual model training and automated retraining. DESCRIPTION MLOps, a combination of DevOps, data engineering, and machine learning, is crucial for delivering high-quality machine learning results due to the dynamic nature of machine learning data. This book delves into MLOps, covering its core concepts, components, and architecture, demonstrating how MLOps fosters robust and continuously improving machine learning systems. By covering the end-to-end machine learning pipeline from data to deployment, the book helps readers implement MLOps workflows. It discusses techniques like feature engineering, model development, A/B testing, and canary deployments. The book equips readers with knowledge of MLOps tools and infrastructure for tasks like model tracking, model governance, metadata management, and pipeline orchestration. Monitoring and maintenance processes to detect model degradation are covered in depth. Readers can gain skills to build efficient CI/CD pipelines, deploy models faster, and make their ML systems more reliable, robust and production-ready. Overall, the book is an indispensable guide to MLOps and its applications for delivering business value through continuous machine learning and AI. WHAT YOU WILL LEARN ● Architect robust MLOps infrastructure with components like feature stores. ● Leverage MLOps tools like model registries, metadata stores, pipelines. ● Build CI/CD workflows to deploy models faster and continually. ● Monitor and maintain models in production to detect degradation. ● Create automated workflows for retraining and updating models in production. WHO THIS BOOK IS FOR Machine learning specialists, data scientists, DevOps professionals, software development teams, and all those who want to adopt the DevOps approach in their agile machine learning experiments and applications. Prior knowledge of machine learning and Python programming is desired. TABLE OF CONTENTS 1. Getting Started with MLOps 2. MLOps Architecture and Components 3. MLOps Infrastructure and Tools 4. What are Machine Learning Systems? 5. Data Preparation and Model Development 6. Model Deployment and Serving 7. Continuous Delivery of Machine Learning Models 8. Continual Learning 9. Continuous Monitoring, Logging, and Maintenance

Cyber Forensics Up and Running

Download Cyber Forensics Up and Running PDF Online Free

Author :
Publisher : BPB Publications
ISBN 13 : 9355517181
Total Pages : 284 pages
Book Rating : 4.3/5 (555 download)

DOWNLOAD NOW!


Book Synopsis Cyber Forensics Up and Running by : Tarun Vashishth

Download or read book Cyber Forensics Up and Running written by Tarun Vashishth and published by BPB Publications. This book was released on 2023-12-12 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Empowering you to investigate, analyze, and secure the digital realm KEY FEATURES ● Comprehensive coverage of all digital forensics concepts. ● Real-world case studies and examples to illustrate techniques. ● Step-by-step instructions for setting up and using essential forensic tools. ● In-depth exploration of volatile and non-volatile data analysis. DESCRIPTION Digital forensics is the art and science of extracting the hidden truth and this book is your hands-on companion, bringing the world of digital forensics to life. Starting with the core principles of digital forensics, the book explores the significance of various case types, the interconnectedness of the field with cybersecurity, and the ever-expanding digital world's challenges. As you progress, you will explore data acquisition, image formats, digital evidence preservation, file carving, metadata extraction, and the practical use of essential forensic tools like HxD, The Sleuth Kit, Autopsy, Volatility, and PowerForensics. The book offers step-by-step instructions, real-world case studies, and practical examples, ensuring that beginners can confidently set up and use forensic tools. Experienced professionals, on the other hand, will find advanced insights into memory analysis, network forensics, anti-forensic techniques, and more. This book empowers you to become a digital detective, capable of uncovering data secrets, investigating networks, exploring volatile and non-volatile evidence, and understanding the intricacies of modern browsers and emails. WHAT YOU WILL LEARN ● Learn how to set up and use digital forensic tools, including virtual environments. ● Learn about live forensics, incident response, and timeline examination. ● In-depth exploration of Windows Registry and USBs. ● Network forensics, PCAPs, and malware scenarios. ● Memory forensics, malware detection, and file carving. ● Advance tools like PowerForensics and Autopsy. WHO THIS BOOK IS FOR Whether you are a tech-savvy detective, a curious student, or a seasoned cybersecurity pro seeking to amplify your skillset. Network admins, law enforcement officers, incident responders, aspiring analysts, and even legal professionals will find invaluable tools and techniques within these pages. TABLE OF CONTENTS 1. Introduction to Essential Concepts of Digital Forensics 2. Digital Forensics Lab Setup 3. Data Collection: Volatile and Non-Volatile 4. Forensics Analysis: Live Response 5. File System and Log Analysis 6. Windows Registry and Artifacts 7. Network Data Collection and Analysis 8. Memory Forensics: Techniques and Tools 9. Browser and Email Forensics 10. Advanced Forensics Tools, Commands and Methods 11. Anti-Digital Forensics Techniques and Methods

Introducing MLOps

Download Introducing MLOps PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1098116429
Total Pages : 171 pages
Book Rating : 4.0/5 (981 download)

DOWNLOAD NOW!


Book Synopsis Introducing MLOps by : Mark Treveil

Download or read book Introducing MLOps written by Mark Treveil and published by "O'Reilly Media, Inc.". This book was released on 2020-11-30 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: More than half of the analytics and machine learning (ML) models created by organizations today never make it into production. Some of the challenges and barriers to operationalization are technical, but others are organizational. Either way, the bottom line is that models not in production can't provide business impact. This book introduces the key concepts of MLOps to help data scientists and application engineers not only operationalize ML models to drive real business change but also maintain and improve those models over time. Through lessons based on numerous MLOps applications around the world, nine experts in machine learning provide insights into the five steps of the model life cycle--Build, Preproduction, Deployment, Monitoring, and Governance--uncovering how robust MLOps processes can be infused throughout. This book helps you: Fulfill data science value by reducing friction throughout ML pipelines and workflows Refine ML models through retraining, periodic tuning, and complete remodeling to ensure long-term accuracy Design the MLOps life cycle to minimize organizational risks with models that are unbiased, fair, and explainable Operationalize ML models for pipeline deployment and for external business systems that are more complex and less standardized

Mastering Azure Machine Learning

Download Mastering Azure Machine Learning PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1789801524
Total Pages : 437 pages
Book Rating : 4.7/5 (898 download)

DOWNLOAD NOW!


Book Synopsis Mastering Azure Machine Learning by : Christoph Körner

Download or read book Mastering Azure Machine Learning written by Christoph Körner and published by Packt Publishing Ltd. This book was released on 2020-04-30 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master expert techniques for building automated and highly scalable end-to-end machine learning models and pipelines in Azure using TensorFlow, Spark, and Kubernetes Key FeaturesMake sense of data on the cloud by implementing advanced analyticsTrain and optimize advanced deep learning models efficiently on Spark using Azure DatabricksDeploy machine learning models for batch and real-time scoring with Azure Kubernetes Service (AKS)Book Description The increase being seen in data volume today requires distributed systems, powerful algorithms, and scalable cloud infrastructure to compute insights and train and deploy machine learning (ML) models. This book will help you improve your knowledge of building ML models using Azure and end-to-end ML pipelines on the cloud. The book starts with an overview of an end-to-end ML project and a guide on how to choose the right Azure service for different ML tasks. It then focuses on Azure Machine Learning and takes you through the process of data experimentation, data preparation, and feature engineering using Azure Machine Learning and Python. You'll learn advanced feature extraction techniques using natural language processing (NLP), classical ML techniques, and the secrets of both a great recommendation engine and a performant computer vision model using deep learning methods. You'll also explore how to train, optimize, and tune models using Azure Automated Machine Learning and HyperDrive, and perform distributed training on Azure. Then, you'll learn different deployment and monitoring techniques using Azure Kubernetes Services with Azure Machine Learning, along with the basics of MLOps—DevOps for ML to automate your ML process as CI/CD pipeline. By the end of this book, you'll have mastered Azure Machine Learning and be able to confidently design, build and operate scalable ML pipelines in Azure. What you will learnSetup your Azure Machine Learning workspace for data experimentation and visualizationPerform ETL, data preparation, and feature extraction using Azure best practicesImplement advanced feature extraction using NLP and word embeddingsTrain gradient boosted tree-ensembles, recommendation engines and deep neural networks on Azure Machine LearningUse hyperparameter tuning and Azure Automated Machine Learning to optimize your ML modelsEmploy distributed ML on GPU clusters using Horovod in Azure Machine LearningDeploy, operate and manage your ML models at scaleAutomated your end-to-end ML process as CI/CD pipelines for MLOpsWho this book is for This machine learning book is for data professionals, data analysts, data engineers, data scientists, or machine learning developers who want to master scalable cloud-based machine learning architectures in Azure. This book will help you use advanced Azure services to build intelligent machine learning applications. A basic understanding of Python and working knowledge of machine learning are mandatory.

Engineering MLOps

Download Engineering MLOps PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1800566328
Total Pages : 370 pages
Book Rating : 4.8/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Engineering MLOps by : Emmanuel Raj

Download or read book Engineering MLOps written by Emmanuel Raj and published by Packt Publishing Ltd. This book was released on 2021-04-19 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get up and running with machine learning life cycle management and implement MLOps in your organization Key FeaturesBecome well-versed with MLOps techniques to monitor the quality of machine learning models in productionExplore a monitoring framework for ML models in production and learn about end-to-end traceability for deployed modelsPerform CI/CD to automate new implementations in ML pipelinesBook Description Engineering MLps presents comprehensive insights into MLOps coupled with real-world examples in Azure to help you to write programs, train robust and scalable ML models, and build ML pipelines to train and deploy models securely in production. The book begins by familiarizing you with the MLOps workflow so you can start writing programs to train ML models. Then you'll then move on to explore options for serializing and packaging ML models post-training to deploy them to facilitate machine learning inference, model interoperability, and end-to-end model traceability. You'll learn how to build ML pipelines, continuous integration and continuous delivery (CI/CD) pipelines, and monitor pipelines to systematically build, deploy, monitor, and govern ML solutions for businesses and industries. Finally, you'll apply the knowledge you've gained to build real-world projects. By the end of this ML book, you'll have a 360-degree view of MLOps and be ready to implement MLOps in your organization. What you will learnFormulate data governance strategies and pipelines for ML training and deploymentGet to grips with implementing ML pipelines, CI/CD pipelines, and ML monitoring pipelinesDesign a robust and scalable microservice and API for test and production environmentsCurate your custom CD processes for related use cases and organizationsMonitor ML models, including monitoring data drift, model drift, and application performanceBuild and maintain automated ML systemsWho this book is for This MLOps book is for data scientists, software engineers, DevOps engineers, machine learning engineers, and business and technology leaders who want to build, deploy, and maintain ML systems in production using MLOps principles and techniques. Basic knowledge of machine learning is necessary to get started with this book.

Mastering Data Engineering and Analytics with Databricks

Download Mastering Data Engineering and Analytics with Databricks PDF Online Free

Author :
Publisher : Orange Education Pvt Ltd
ISBN 13 : 8196862040
Total Pages : 567 pages
Book Rating : 4.1/5 (968 download)

DOWNLOAD NOW!


Book Synopsis Mastering Data Engineering and Analytics with Databricks by : Manoj Kumar

Download or read book Mastering Data Engineering and Analytics with Databricks written by Manoj Kumar and published by Orange Education Pvt Ltd. This book was released on 2024-09-30 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: TAGLINE Master Databricks to Transform Data into Strategic Insights for Tomorrow’s Business Challenges KEY FEATURES ● Combines theory with practical steps to master Databricks, Delta Lake, and MLflow. ● Real-world examples from FMCG and CPG sectors demonstrate Databricks in action. ● Covers real-time data processing, ML integration, and CI/CD for scalable pipelines. ● Offers proven strategies to optimize workflows and avoid common pitfalls. DESCRIPTION In today’s data-driven world, mastering data engineering is crucial for driving innovation and delivering real business impact. Databricks is one of the most powerful platforms which unifies data, analytics and AI requirements of numerous organizations worldwide. Mastering Data Engineering and Analytics with Databricks goes beyond the basics, offering a hands-on, practical approach tailored for professionals eager to excel in the evolving landscape of data engineering and analytics. This book uniquely blends foundational knowledge with advanced applications, equipping readers with the expertise to build, optimize, and scale data pipelines that meet real-world business needs. With a focus on actionable learning, it delves into complex workflows, including real-time data processing, advanced optimization with Delta Lake, and seamless ML integration with MLflow—skills critical for today’s data professionals. Drawing from real-world case studies in FMCG and CPG industries, this book not only teaches you how to implement Databricks solutions but also provides strategic insights into tackling industry-specific challenges. From setting up your environment to deploying CI/CD pipelines, you'll gain a competitive edge by mastering techniques that are directly applicable to your organization’s data strategy. By the end, you’ll not just understand Databricks—you’ll command it, positioning yourself as a leader in the data engineering space. WHAT WILL YOU LEARN ● Design and implement scalable, high-performance data pipelines using Databricks for various business use cases. ● Optimize query performance and efficiently manage cloud resources for cost-effective data processing. ● Seamlessly integrate machine learning models into your data engineering workflows for smarter automation. ● Build and deploy real-time data processing solutions for timely and actionable insights. ● Develop reliable and fault-tolerant Delta Lake architectures to support efficient data lakes at scale. WHO IS THIS BOOK FOR? This book is designed for data engineering students, aspiring data engineers, experienced data professionals, cloud data architects, data scientists and analysts looking to expand their skill sets, as well as IT managers seeking to master data engineering and analytics with Databricks. A basic understanding of data engineering concepts, familiarity with data analytics, and some experience with cloud computing or programming languages such as Python or SQL will help readers fully benefit from the book’s content. TABLE OF CONTENTS SECTION 1 1. Introducing Data Engineering with Databricks 2. Setting Up a Databricks Environment for Data Engineering 3. Working with Databricks Utilities and Clusters SECTION 2 4. Extracting and Loading Data Using Databricks 5. Transforming Data with Databricks 6. Handling Streaming Data with Databricks 7. Creating Delta Live Tables 8. Data Partitioning and Shuffling 9. Performance Tuning and Best Practices 10. Workflow Management 11. Databricks SQL Warehouse 12. Data Storage and Unity Catalog 13. Monitoring Databricks Clusters and Jobs 14. Production Deployment Strategies 15. Maintaining Data Pipelines in Production 16. Managing Data Security and Governance 17. Real-World Data Engineering Use Cases with Databricks 18. AI and ML Essentials 19. Integrating Databricks with External Tools Index

The Machine Learning Solutions Architect Handbook

Download The Machine Learning Solutions Architect Handbook PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1801070415
Total Pages : 442 pages
Book Rating : 4.8/5 (1 download)

DOWNLOAD NOW!


Book Synopsis The Machine Learning Solutions Architect Handbook by : David Ping

Download or read book The Machine Learning Solutions Architect Handbook written by David Ping and published by Packt Publishing Ltd. This book was released on 2022-01-21 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build highly secure and scalable machine learning platforms to support the fast-paced adoption of machine learning solutions Key Features Explore different ML tools and frameworks to solve large-scale machine learning challenges in the cloud Build an efficient data science environment for data exploration, model building, and model training Learn how to implement bias detection, privacy, and explainability in ML model development Book DescriptionWhen equipped with a highly scalable machine learning (ML) platform, organizations can quickly scale the delivery of ML products for faster business value realization. There is a huge demand for skilled ML solutions architects in different industries, and this handbook will help you master the design patterns, architectural considerations, and the latest technology insights you’ll need to become one. You’ll start by understanding ML fundamentals and how ML can be applied to solve real-world business problems. Once you've explored a few leading problem-solving ML algorithms, this book will help you tackle data management and get the most out of ML libraries such as TensorFlow and PyTorch. Using open source technology such as Kubernetes/Kubeflow to build a data science environment and ML pipelines will be covered next, before moving on to building an enterprise ML architecture using Amazon Web Services (AWS). You’ll also learn about security and governance considerations, advanced ML engineering techniques, and how to apply bias detection, explainability, and privacy in ML model development. By the end of this book, you’ll be able to design and build an ML platform to support common use cases and architecture patterns like a true professional. What you will learn Apply ML methodologies to solve business problems Design a practical enterprise ML platform architecture Implement MLOps for ML workflow automation Build an end-to-end data management architecture using AWS Train large-scale ML models and optimize model inference latency Create a business application using an AI service and a custom ML model Use AWS services to detect data and model bias and explain models Who this book is for This book is for data scientists, data engineers, cloud architects, and machine learning enthusiasts who want to become machine learning solutions architects. You’ll need basic knowledge of the Python programming language, AWS, linear algebra, probability, and networking concepts before you get started with this handbook.

Machine Learning Design Patterns

Download Machine Learning Design Patterns PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1098115759
Total Pages : 408 pages
Book Rating : 4.0/5 (981 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Design Patterns by : Valliappa Lakshmanan

Download or read book Machine Learning Design Patterns written by Valliappa Lakshmanan and published by O'Reilly Media. This book was released on 2020-10-15 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors, three Google engineers, catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice. In this book, you will find detailed explanations of 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the best technique for your situation. You'll learn how to: Identify and mitigate common challenges when training, evaluating, and deploying ML models Represent data for different ML model types, including embeddings, feature crosses, and more Choose the right model type for specific problems Build a robust training loop that uses checkpoints, distribution strategy, and hyperparameter tuning Deploy scalable ML systems that you can retrain and update to reflect new data Interpret model predictions for stakeholders and ensure models are treating users fairly

Google Cloud for DevOps Engineers

Download Google Cloud for DevOps Engineers PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 183921127X
Total Pages : 483 pages
Book Rating : 4.8/5 (392 download)

DOWNLOAD NOW!


Book Synopsis Google Cloud for DevOps Engineers by : Sandeep Madamanchi

Download or read book Google Cloud for DevOps Engineers written by Sandeep Madamanchi and published by Packt Publishing Ltd. This book was released on 2021-07-02 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore site reliability engineering practices and learn key Google Cloud Platform (GCP) services such as CSR, Cloud Build, Container Registry, GKE, and Cloud Operations to implement DevOps Key FeaturesLearn GCP services for version control, building code, creating artifacts, and deploying secured containerized applicationsExplore Cloud Operations features such as Metrics Explorer, Logs Explorer, and debug logpointsPrepare for the certification exam using practice questions and mock testsBook Description DevOps is a set of practices that help remove barriers between developers and system administrators, and is implemented by Google through site reliability engineering (SRE). With the help of this book, you'll explore the evolution of DevOps and SRE, before delving into SRE technical practices such as SLA, SLO, SLI, and error budgets that are critical to building reliable software faster and balance new feature deployment with system reliability. You'll then explore SRE cultural practices such as incident management and being on-call, and learn the building blocks to form SRE teams. The second part of the book focuses on Google Cloud services to implement DevOps via continuous integration and continuous delivery (CI/CD). You'll learn how to add source code via Cloud Source Repositories, build code to create deployment artifacts via Cloud Build, and push it to Container Registry. Moving on, you'll understand the need for container orchestration via Kubernetes, comprehend Kubernetes essentials, apply via Google Kubernetes Engine (GKE), and secure the GKE cluster. Finally, you'll explore Cloud Operations to monitor, alert, debug, trace, and profile deployed applications. By the end of this SRE book, you'll be well-versed with the key concepts necessary for gaining Professional Cloud DevOps Engineer certification with the help of mock tests. What you will learnCategorize user journeys and explore different ways to measure SLIsExplore the four golden signals for monitoring a user-facing systemUnderstand psychological safety along with other SRE cultural practicesCreate containers with build triggers and manual invocationsDelve into Kubernetes workloads and potential deployment strategiesSecure GKE clusters via private clusters, Binary Authorization, and shielded GKE nodesGet to grips with monitoring, Metrics Explorer, uptime checks, and alertingDiscover how logs are ingested via the Cloud Logging APIWho this book is for This book is for cloud system administrators and network engineers interested in resolving cloud-based operational issues. IT professionals looking to enhance their careers in administering Google Cloud services and users who want to learn about applying SRE principles and implementing DevOps in GCP will also benefit from this book. Basic knowledge of cloud computing, GCP services, and CI/CD and hands-on experience with Unix/Linux infrastructure is recommended. You'll also find this book useful if you're interested in achieving Professional Cloud DevOps Engineer certification.

Pragmatic AI

Download Pragmatic AI PDF Online Free

Author :
Publisher : Addison-Wesley Professional
ISBN 13 : 0134863917
Total Pages : 720 pages
Book Rating : 4.1/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Pragmatic AI by : Noah Gift

Download or read book Pragmatic AI written by Noah Gift and published by Addison-Wesley Professional. This book was released on 2018-07-12 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master Powerful Off-the-Shelf Business Solutions for AI and Machine Learning Pragmatic AI will help you solve real-world problems with contemporary machine learning, artificial intelligence, and cloud computing tools. Noah Gift demystifies all the concepts and tools you need to get results—even if you don’t have a strong background in math or data science. Gift illuminates powerful off-the-shelf cloud offerings from Amazon, Google, and Microsoft, and demonstrates proven techniques using the Python data science ecosystem. His workflows and examples help you streamline and simplify every step, from deployment to production, and build exceptionally scalable solutions. As you learn how machine language (ML) solutions work, you’ll gain a more intuitive understanding of what you can achieve with them and how to maximize their value. Building on these fundamentals, you’ll walk step-by-step through building cloud-based AI/ML applications to address realistic issues in sports marketing, project management, product pricing, real estate, and beyond. Whether you’re a business professional, decision-maker, student, or programmer, Gift’s expert guidance and wide-ranging case studies will prepare you to solve data science problems in virtually any environment. Get and configure all the tools you’ll need Quickly review all the Python you need to start building machine learning applications Master the AI and ML toolchain and project lifecycle Work with Python data science tools such as IPython, Pandas, Numpy, Juypter Notebook, and Sklearn Incorporate a pragmatic feedback loop that continually improves the efficiency of your workflows and systems Develop cloud AI solutions with Google Cloud Platform, including TPU, Colaboratory, and Datalab services Define Amazon Web Services cloud AI workflows, including spot instances, code pipelines, boto, and more Work with Microsoft Azure AI APIs Walk through building six real-world AI applications, from start to finish Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.

Architecting Google Cloud Solutions

Download Architecting Google Cloud Solutions PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1800564155
Total Pages : 472 pages
Book Rating : 4.8/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Architecting Google Cloud Solutions by : Victor Dantas

Download or read book Architecting Google Cloud Solutions written by Victor Dantas and published by Packt Publishing Ltd. This book was released on 2021-05-14 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Achieve your business goals and build highly available, scalable, and secure cloud infrastructure by designing robust and cost-effective solutions as a Google Cloud Architect. Key FeaturesGain hands-on experience in designing and managing high-performance cloud solutionsLeverage Google Cloud Platform to optimize technical and business processes using cutting-edge technologies and servicesUse Google Cloud Big Data, AI, and ML services to design scalable and intelligent data solutionsBook Description Google has been one of the top players in the public cloud domain thanks to its agility and performance capabilities. This book will help you design, develop, and manage robust, secure, and dynamic solutions to successfully meet your business needs. You'll learn how to plan and design network, compute, storage, and big data systems that incorporate security and compliance from the ground up. The chapters will cover simple to complex use cases for devising solutions to business problems, before focusing on how to leverage Google Cloud's Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS) capabilities for designing modern no-operations platforms. Throughout this book, you'll discover how to design for scalability, resiliency, and high availability. Later, you'll find out how to use Google Cloud to design modern applications using microservices architecture, automation, and Infrastructure-as-Code (IaC) practices. The concluding chapters then demonstrate how to apply machine learning and artificial intelligence (AI) to derive insights from your data. Finally, you will discover best practices for operating and monitoring your cloud solutions, as well as performing troubleshooting and quality assurance. By the end of this Google Cloud book, you'll be able to design robust enterprise-grade solutions using Google Cloud Platform. What you will learnGet to grips with compute, storage, networking, data analytics, and pricingDiscover delivery models such as IaaS, PaaS, and SaaSExplore the underlying technologies and economics of cloud computingDesign for scalability, business continuity, observability, and resiliencySecure Google Cloud solutions and ensure complianceUnderstand operational best practices and learn how to architect a monitoring solutionGain insights into modern application design with Google CloudLeverage big data, machine learning, and AI with Google CloudWho this book is for This book is for cloud architects who are responsible for designing and managing cloud solutions with GCP. You'll also find the book useful if you're a system engineer or enterprise architect looking to learn how to design solutions with Google Cloud. Moreover, cloud architects who already have experience with other cloud providers and are now beginning to work with Google Cloud will benefit from the book. Although an intermediate-level understanding of cloud computing and distributed apps is required, prior experience of working in the public and hybrid cloud domain is not mandatory.

MLOps Engineering at Scale

Download MLOps Engineering at Scale PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638356505
Total Pages : 497 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis MLOps Engineering at Scale by : Carl Osipov

Download or read book MLOps Engineering at Scale written by Carl Osipov and published by Simon and Schuster. This book was released on 2022-03-22 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dodge costly and time-consuming infrastructure tasks, and rapidly bring your machine learning models to production with MLOps and pre-built serverless tools! In MLOps Engineering at Scale you will learn: Extracting, transforming, and loading datasets Querying datasets with SQL Understanding automatic differentiation in PyTorch Deploying model training pipelines as a service endpoint Monitoring and managing your pipeline’s life cycle Measuring performance improvements MLOps Engineering at Scale shows you how to put machine learning into production efficiently by using pre-built services from AWS and other cloud vendors. You’ll learn how to rapidly create flexible and scalable machine learning systems without laboring over time-consuming operational tasks or taking on the costly overhead of physical hardware. Following a real-world use case for calculating taxi fares, you will engineer an MLOps pipeline for a PyTorch model using AWS server-less capabilities. About the technology A production-ready machine learning system includes efficient data pipelines, integrated monitoring, and means to scale up and down based on demand. Using cloud-based services to implement ML infrastructure reduces development time and lowers hosting costs. Serverless MLOps eliminates the need to build and maintain custom infrastructure, so you can concentrate on your data, models, and algorithms. About the book MLOps Engineering at Scale teaches you how to implement efficient machine learning systems using pre-built services from AWS and other cloud vendors. This easy-to-follow book guides you step-by-step as you set up your serverless ML infrastructure, even if you’ve never used a cloud platform before. You’ll also explore tools like PyTorch Lightning, Optuna, and MLFlow that make it easy to build pipelines and scale your deep learning models in production. What's inside Reduce or eliminate ML infrastructure management Learn state-of-the-art MLOps tools like PyTorch Lightning and MLFlow Deploy training pipelines as a service endpoint Monitor and manage your pipeline’s life cycle Measure performance improvements About the reader Readers need to know Python, SQL, and the basics of machine learning. No cloud experience required. About the author Carl Osipov implemented his first neural net in 2000 and has worked on deep learning and machine learning at Google and IBM. Table of Contents PART 1 - MASTERING THE DATA SET 1 Introduction to serverless machine learning 2 Getting started with the data set 3 Exploring and preparing the data set 4 More exploratory data analysis and data preparation PART 2 - PYTORCH FOR SERVERLESS MACHINE LEARNING 5 Introducing PyTorch: Tensor basics 6 Core PyTorch: Autograd, optimizers, and utilities 7 Serverless machine learning at scale 8 Scaling out with distributed training PART 3 - SERVERLESS MACHINE LEARNING PIPELINE 9 Feature selection 10 Adopting PyTorch Lightning 11 Hyperparameter optimization 12 Machine learning pipeline

Agile Machine Learning with DataRobot

Download Agile Machine Learning with DataRobot PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1801078645
Total Pages : 345 pages
Book Rating : 4.8/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Agile Machine Learning with DataRobot by : Bipin Chadha

Download or read book Agile Machine Learning with DataRobot written by Bipin Chadha and published by Packt Publishing Ltd. This book was released on 2021-12-24 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage DataRobot's enterprise AI platform and automated decision intelligence to extract business value from data Key FeaturesGet well-versed with DataRobot features using real-world examplesUse this all-in-one platform to build, monitor, and deploy ML models for handling the entire production life cycleMake use of advanced DataRobot capabilities to programmatically build and deploy a large number of ML modelsBook Description DataRobot enables data science teams to become more efficient and productive. This book helps you to address machine learning (ML) challenges with DataRobot's enterprise platform, enabling you to extract business value from data and rapidly create commercial impact for your organization. You'll begin by learning how to use DataRobot's features to perform data prep and cleansing tasks automatically. The book then covers best practices for building and deploying ML models, along with challenges faced while scaling them to handle complex business problems. Moving on, you'll perform exploratory data analysis (EDA) tasks to prepare your data to build ML models and ways to interpret results. You'll also discover how to analyze the model's predictions and turn them into actionable insights for business users. Next, you'll create model documentation for internal as well as compliance purposes and learn how the model gets deployed as an API. In addition, you'll find out how to operationalize and monitor the model's performance. Finally, you'll work with examples on time series forecasting, NLP, image processing, MLOps, and more using advanced DataRobot capabilities. By the end of this book, you'll have learned to use DataRobot's AutoML and MLOps features to scale ML model building by avoiding repetitive tasks and common errors. What you will learnUnderstand and solve business problems using DataRobotUse DataRobot to prepare your data and perform various data analysis tasks to start building modelsDevelop robust ML models and assess their results correctly before deploymentExplore various DataRobot functions and outputs to help you understand the models and select the one that best solves the business problemAnalyze a model's predictions and turn them into actionable insights for business usersUnderstand how DataRobot helps in governing, deploying, and maintaining ML modelsWho this book is for This book is for data scientists, data analysts, and data enthusiasts looking for a practical guide to building and deploying robust machine learning models using DataRobot. Experienced data scientists will also find this book helpful for rapidly exploring, building, and deploying a broader range of models. The book assumes a basic understanding of machine learning.

Machine Learning Engineering with Python

Download Machine Learning Engineering with Python PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 180107710X
Total Pages : 277 pages
Book Rating : 4.8/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Engineering with Python by : Andrew P. McMahon

Download or read book Machine Learning Engineering with Python written by Andrew P. McMahon and published by Packt Publishing Ltd. This book was released on 2021-11-05 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Supercharge the value of your machine learning models by building scalable and robust solutions that can serve them in production environments Key Features Explore hyperparameter optimization and model management tools Learn object-oriented programming and functional programming in Python to build your own ML libraries and packages Explore key ML engineering patterns like microservices and the Extract Transform Machine Learn (ETML) pattern with use cases Book DescriptionMachine learning engineering is a thriving discipline at the interface of software development and machine learning. This book will help developers working with machine learning and Python to put their knowledge to work and create high-quality machine learning products and services. Machine Learning Engineering with Python takes a hands-on approach to help you get to grips with essential technical concepts, implementation patterns, and development methodologies to have you up and running in no time. You'll begin by understanding key steps of the machine learning development life cycle before moving on to practical illustrations and getting to grips with building and deploying robust machine learning solutions. As you advance, you'll explore how to create your own toolsets for training and deployment across all your projects in a consistent way. The book will also help you get hands-on with deployment architectures and discover methods for scaling up your solutions while building a solid understanding of how to use cloud-based tools effectively. Finally, you'll work through examples to help you solve typical business problems. By the end of this book, you'll be able to build end-to-end machine learning services using a variety of techniques and design your own processes for consistently performant machine learning engineering.What you will learn Find out what an effective ML engineering process looks like Uncover options for automating training and deployment and learn how to use them Discover how to build your own wrapper libraries for encapsulating your data science and machine learning logic and solutions Understand what aspects of software engineering you can bring to machine learning Gain insights into adapting software engineering for machine learning using appropriate cloud technologies Perform hyperparameter tuning in a relatively automated way Who this book is for This book is for machine learning engineers, data scientists, and software developers who want to build robust software solutions with machine learning components. If you're someone who manages or wants to understand the production life cycle of these systems, you'll find this book useful. Intermediate-level knowledge of Python is necessary.

Automated Machine Learning on AWS

Download Automated Machine Learning on AWS PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 180181452X
Total Pages : 421 pages
Book Rating : 4.8/5 (18 download)

DOWNLOAD NOW!


Book Synopsis Automated Machine Learning on AWS by : Trenton Potgieter

Download or read book Automated Machine Learning on AWS written by Trenton Potgieter and published by Packt Publishing Ltd. This book was released on 2022-04-15 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: Automate the process of building, training, and deploying machine learning applications to production with AWS solutions such as SageMaker Autopilot, AutoGluon, Step Functions, Amazon Managed Workflows for Apache Airflow, and more Key FeaturesExplore the various AWS services that make automated machine learning easierRecognize the role of DevOps and MLOps methodologies in pipeline automationGet acquainted with additional AWS services such as Step Functions, MWAA, and more to overcome automation challengesBook Description AWS provides a wide range of solutions to help automate a machine learning workflow with just a few lines of code. With this practical book, you'll learn how to automate a machine learning pipeline using the various AWS services. Automated Machine Learning on AWS begins with a quick overview of what the machine learning pipeline/process looks like and highlights the typical challenges that you may face when building a pipeline. Throughout the book, you'll become well versed with various AWS solutions such as Amazon SageMaker Autopilot, AutoGluon, and AWS Step Functions to automate an end-to-end ML process with the help of hands-on examples. The book will show you how to build, monitor, and execute a CI/CD pipeline for the ML process and how the various CI/CD services within AWS can be applied to a use case with the Cloud Development Kit (CDK). You'll understand what a data-centric ML process is by working with the Amazon Managed Services for Apache Airflow and then build a managed Airflow environment. You'll also cover the key success criteria for an MLSDLC implementation and the process of creating a self-mutating CI/CD pipeline using AWS CDK from the perspective of the platform engineering team. By the end of this AWS book, you'll be able to effectively automate a complete machine learning pipeline and deploy it to production. What you will learnEmploy SageMaker Autopilot and Amazon SageMaker SDK to automate the machine learning processUnderstand how to use AutoGluon to automate complicated model building tasksUse the AWS CDK to codify the machine learning processCreate, deploy, and rebuild a CI/CD pipeline on AWSBuild an ML workflow using AWS Step Functions and the Data Science SDKLeverage the Amazon SageMaker Feature Store to automate the machine learning software development life cycle (MLSDLC)Discover how to use Amazon MWAA for a data-centric ML processWho this book is for This book is for the novice as well as experienced machine learning practitioners looking to automate the process of building, training, and deploying machine learning-based solutions into production, using both purpose-built and other AWS services. A basic understanding of the end-to-end machine learning process and concepts, Python programming, and AWS is necessary to make the most out of this book.

Learning Deep Learning

Download Learning Deep Learning PDF Online Free

Author :
Publisher : Addison-Wesley Professional
ISBN 13 : 0137470290
Total Pages : 1106 pages
Book Rating : 4.1/5 (374 download)

DOWNLOAD NOW!


Book Synopsis Learning Deep Learning by : Magnus Ekman

Download or read book Learning Deep Learning written by Magnus Ekman and published by Addison-Wesley Professional. This book was released on 2021-07-19 with total page 1106 pages. Available in PDF, EPUB and Kindle. Book excerpt: NVIDIA's Full-Color Guide to Deep Learning: All You Need to Get Started and Get Results "To enable everyone to be part of this historic revolution requires the democratization of AI knowledge and resources. This book is timely and relevant towards accomplishing these lofty goals." -- From the foreword by Dr. Anima Anandkumar, Bren Professor, Caltech, and Director of ML Research, NVIDIA "Ekman uses a learning technique that in our experience has proven pivotal to success—asking the reader to think about using DL techniques in practice. His straightforward approach is refreshing, and he permits the reader to dream, just a bit, about where DL may yet take us." -- From the foreword by Dr. Craig Clawson, Director, NVIDIA Deep Learning Institute Deep learning (DL) is a key component of today's exciting advances in machine learning and artificial intelligence. Learning Deep Learning is a complete guide to DL. Illuminating both the core concepts and the hands-on programming techniques needed to succeed, this book is ideal for developers, data scientists, analysts, and others--including those with no prior machine learning or statistics experience. After introducing the essential building blocks of deep neural networks, such as artificial neurons and fully connected, convolutional, and recurrent layers, Magnus Ekman shows how to use them to build advanced architectures, including the Transformer. He describes how these concepts are used to build modern networks for computer vision and natural language processing (NLP), including Mask R-CNN, GPT, and BERT. And he explains how a natural language translator and a system generating natural language descriptions of images. Throughout, Ekman provides concise, well-annotated code examples using TensorFlow with Keras. Corresponding PyTorch examples are provided online, and the book thereby covers the two dominating Python libraries for DL used in industry and academia. He concludes with an introduction to neural architecture search (NAS), exploring important ethical issues and providing resources for further learning. Explore and master core concepts: perceptrons, gradient-based learning, sigmoid neurons, and back propagation See how DL frameworks make it easier to develop more complicated and useful neural networks Discover how convolutional neural networks (CNNs) revolutionize image classification and analysis Apply recurrent neural networks (RNNs) and long short-term memory (LSTM) to text and other variable-length sequences Master NLP with sequence-to-sequence networks and the Transformer architecture Build applications for natural language translation and image captioning NVIDIA's invention of the GPU sparked the PC gaming market. The company's pioneering work in accelerated computing--a supercharged form of computing at the intersection of computer graphics, high-performance computing, and AI--is reshaping trillion-dollar industries, such as transportation, healthcare, and manufacturing, and fueling the growth of many others. Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.

Automated Machine Learning

Download Automated Machine Learning PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1800565526
Total Pages : 312 pages
Book Rating : 4.8/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Automated Machine Learning by : Adnan Masood

Download or read book Automated Machine Learning written by Adnan Masood and published by Packt Publishing Ltd. This book was released on 2021-02-18 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get to grips with automated machine learning and adopt a hands-on approach to AutoML implementation and associated methodologies Key FeaturesGet up to speed with AutoML using OSS, Azure, AWS, GCP, or any platform of your choiceEliminate mundane tasks in data engineering and reduce human errors in machine learning modelsFind out how you can make machine learning accessible for all users to promote decentralized processesBook Description Every machine learning engineer deals with systems that have hyperparameters, and the most basic task in automated machine learning (AutoML) is to automatically set these hyperparameters to optimize performance. The latest deep neural networks have a wide range of hyperparameters for their architecture, regularization, and optimization, which can be customized effectively to save time and effort. This book reviews the underlying techniques of automated feature engineering, model and hyperparameter tuning, gradient-based approaches, and much more. You'll discover different ways of implementing these techniques in open source tools and then learn to use enterprise tools for implementing AutoML in three major cloud service providers: Microsoft Azure, Amazon Web Services (AWS), and Google Cloud Platform. As you progress, you’ll explore the features of cloud AutoML platforms by building machine learning models using AutoML. The book will also show you how to develop accurate models by automating time-consuming and repetitive tasks in the machine learning development lifecycle. By the end of this machine learning book, you’ll be able to build and deploy AutoML models that are not only accurate, but also increase productivity, allow interoperability, and minimize feature engineering tasks. What you will learnExplore AutoML fundamentals, underlying methods, and techniquesAssess AutoML aspects such as algorithm selection, auto featurization, and hyperparameter tuning in an applied scenarioFind out the difference between cloud and operations support systems (OSS)Implement AutoML in enterprise cloud to deploy ML models and pipelinesBuild explainable AutoML pipelines with transparencyUnderstand automated feature engineering and time series forecastingAutomate data science modeling tasks to implement ML solutions easily and focus on more complex problemsWho this book is for Citizen data scientists, machine learning developers, artificial intelligence enthusiasts, or anyone looking to automatically build machine learning models using the features offered by open source tools, Microsoft Azure Machine Learning, AWS, and Google Cloud Platform will find this book useful. Beginner-level knowledge of building ML models is required to get the best out of this book. Prior experience in using Enterprise cloud is beneficial.