Generative Deep Learning

Download Generative Deep Learning PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492041890
Total Pages : 301 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Generative Deep Learning by : David Foster

Download or read book Generative Deep Learning written by David Foster and published by "O'Reilly Media, Inc.". This book was released on 2019-06-28 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generative modeling is one of the hottest topics in AI. It’s now possible to teach a machine to excel at human endeavors such as painting, writing, and composing music. With this practical book, machine-learning engineers and data scientists will discover how to re-create some of the most impressive examples of generative deep learning models, such as variational autoencoders,generative adversarial networks (GANs), encoder-decoder models and world models. Author David Foster demonstrates the inner workings of each technique, starting with the basics of deep learning before advancing to some of the most cutting-edge algorithms in the field. Through tips and tricks, you’ll understand how to make your models learn more efficiently and become more creative. Discover how variational autoencoders can change facial expressions in photos Build practical GAN examples from scratch, including CycleGAN for style transfer and MuseGAN for music generation Create recurrent generative models for text generation and learn how to improve the models using attention Understand how generative models can help agents to accomplish tasks within a reinforcement learning setting Explore the architecture of the Transformer (BERT, GPT-2) and image generation models such as ProGAN and StyleGAN

200 Tips for Mastering Generative AI

Download 200 Tips for Mastering Generative AI PDF Online Free

Author :
Publisher : Rick Spair
ISBN 13 :
Total Pages : 888 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis 200 Tips for Mastering Generative AI by : Rick Spair

Download or read book 200 Tips for Mastering Generative AI written by Rick Spair and published by Rick Spair. This book was released on with total page 888 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the rapidly evolving landscape of artificial intelligence, Generative AI stands out as a transformative force with the potential to revolutionize industries and reshape our understanding of creativity and automation. From its inception, Generative AI has captured the imagination of researchers, developers, and entrepreneurs, offering unprecedented capabilities in generating new data, simulating complex systems, and solving intricate problems that were once considered beyond the reach of machines. This book, "200 Tips for Mastering Generative AI," is a comprehensive guide designed to empower you with the knowledge and practical insights needed to harness the full potential of Generative AI. Whether you are a seasoned AI practitioner, a curious researcher, a forward-thinking entrepreneur, or a passionate enthusiast, this book provides valuable tips and strategies to navigate the vast and intricate world of Generative AI. We invite you to explore, experiment, and innovate with the knowledge you gain from this book. Together, we can unlock the full potential of Generative AI and shape a future where intelligent machines and human creativity coexist and collaborate in unprecedented ways. Welcome to "200 Tips for Mastering Generative AI." Your journey into the fascinating world of Generative AI begins here.

Deep Learning for Coders with fastai and PyTorch

Download Deep Learning for Coders with fastai and PyTorch PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1492045497
Total Pages : 624 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning for Coders with fastai and PyTorch by : Jeremy Howard

Download or read book Deep Learning for Coders with fastai and PyTorch written by Jeremy Howard and published by O'Reilly Media. This book was released on 2020-06-29 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala

Mastering Prompt Engineering for Generative AI: Unlocking the Full Potential of AI Technology

Download Mastering Prompt Engineering for Generative AI: Unlocking the Full Potential of AI Technology PDF Online Free

Author :
Publisher : Anand Vemula
ISBN 13 :
Total Pages : 54 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Mastering Prompt Engineering for Generative AI: Unlocking the Full Potential of AI Technology by : Anand Vemula

Download or read book Mastering Prompt Engineering for Generative AI: Unlocking the Full Potential of AI Technology written by Anand Vemula and published by Anand Vemula. This book was released on with total page 54 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide to mastering the art and science of crafting effective prompts to unleash the full potential of generative AI. This book delves into the principles, techniques, and ethical considerations of prompt engineering, providing readers with practical insights and strategies for achieving optimal results. The book begins by exploring the fundamentals of prompt engineering, including the definition of prompts, their importance in guiding AI models, and the various types of prompts commonly used. Readers will learn about the common challenges and pitfalls of prompt engineering and gain a deeper understanding of AI models, their architecture, training processes, strengths, and limitations. Moving on to advanced topics, the book covers multi-turn prompts, contextual and sequential prompts, and leveraging model outputs to refine and enhance AI-generated content. Readers will discover domain-specific applications of prompt engineering, including creative writing, conversational AI, visual and artistic applications, and scientific and technical domains. Ethical considerations play a significant role in prompt engineering, and the book provides insights into recognizing and mitigating bias, ethical considerations, and responsible AI use. Readers will also gain practical knowledge of the tools and platforms available for prompt engineering, along with techniques for customizing and extending AI models. Testing and evaluation are essential aspects of prompt engineering, and the book offers guidance on metrics for assessing prompt performance, gathering user feedback, and conducting A/B testing and comparative analysis. Real-world case studies highlight successful applications of prompt engineering across various industries, offering valuable lessons and insights. Finally, the book explores future trends in generative AI and prompt engineering, providing readers with a glimpse into emerging technologies, predictions for the future of AI, and strategies for preparing for future developments. With its comprehensive coverage and practical insights, "Prompt Engineering for Generative AI" is an indispensable resource for AI enthusiasts, researchers, developers, and anyone looking to harness the power of generative AI through effective prompt engineering

Mastering Data Engineering and Analytics with Databricks

Download Mastering Data Engineering and Analytics with Databricks PDF Online Free

Author :
Publisher : Orange Education Pvt Ltd
ISBN 13 : 8196862040
Total Pages : 567 pages
Book Rating : 4.1/5 (968 download)

DOWNLOAD NOW!


Book Synopsis Mastering Data Engineering and Analytics with Databricks by : Manoj Kumar

Download or read book Mastering Data Engineering and Analytics with Databricks written by Manoj Kumar and published by Orange Education Pvt Ltd. This book was released on 2024-09-30 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: TAGLINE Master Databricks to Transform Data into Strategic Insights for Tomorrow’s Business Challenges KEY FEATURES ● Combines theory with practical steps to master Databricks, Delta Lake, and MLflow. ● Real-world examples from FMCG and CPG sectors demonstrate Databricks in action. ● Covers real-time data processing, ML integration, and CI/CD for scalable pipelines. ● Offers proven strategies to optimize workflows and avoid common pitfalls. DESCRIPTION In today’s data-driven world, mastering data engineering is crucial for driving innovation and delivering real business impact. Databricks is one of the most powerful platforms which unifies data, analytics and AI requirements of numerous organizations worldwide. Mastering Data Engineering and Analytics with Databricks goes beyond the basics, offering a hands-on, practical approach tailored for professionals eager to excel in the evolving landscape of data engineering and analytics. This book uniquely blends foundational knowledge with advanced applications, equipping readers with the expertise to build, optimize, and scale data pipelines that meet real-world business needs. With a focus on actionable learning, it delves into complex workflows, including real-time data processing, advanced optimization with Delta Lake, and seamless ML integration with MLflow—skills critical for today’s data professionals. Drawing from real-world case studies in FMCG and CPG industries, this book not only teaches you how to implement Databricks solutions but also provides strategic insights into tackling industry-specific challenges. From setting up your environment to deploying CI/CD pipelines, you'll gain a competitive edge by mastering techniques that are directly applicable to your organization’s data strategy. By the end, you’ll not just understand Databricks—you’ll command it, positioning yourself as a leader in the data engineering space. WHAT WILL YOU LEARN ● Design and implement scalable, high-performance data pipelines using Databricks for various business use cases. ● Optimize query performance and efficiently manage cloud resources for cost-effective data processing. ● Seamlessly integrate machine learning models into your data engineering workflows for smarter automation. ● Build and deploy real-time data processing solutions for timely and actionable insights. ● Develop reliable and fault-tolerant Delta Lake architectures to support efficient data lakes at scale. WHO IS THIS BOOK FOR? This book is designed for data engineering students, aspiring data engineers, experienced data professionals, cloud data architects, data scientists and analysts looking to expand their skill sets, as well as IT managers seeking to master data engineering and analytics with Databricks. A basic understanding of data engineering concepts, familiarity with data analytics, and some experience with cloud computing or programming languages such as Python or SQL will help readers fully benefit from the book’s content. TABLE OF CONTENTS SECTION 1 1. Introducing Data Engineering with Databricks 2. Setting Up a Databricks Environment for Data Engineering 3. Working with Databricks Utilities and Clusters SECTION 2 4. Extracting and Loading Data Using Databricks 5. Transforming Data with Databricks 6. Handling Streaming Data with Databricks 7. Creating Delta Live Tables 8. Data Partitioning and Shuffling 9. Performance Tuning and Best Practices 10. Workflow Management 11. Databricks SQL Warehouse 12. Data Storage and Unity Catalog 13. Monitoring Databricks Clusters and Jobs 14. Production Deployment Strategies 15. Maintaining Data Pipelines in Production 16. Managing Data Security and Governance 17. Real-World Data Engineering Use Cases with Databricks 18. AI and ML Essentials 19. Integrating Databricks with External Tools Index

Mastering LLM Applications with LangChain and Hugging Face

Download Mastering LLM Applications with LangChain and Hugging Face PDF Online Free

Author :
Publisher : BPB Publications
ISBN 13 : 9365891043
Total Pages : 306 pages
Book Rating : 4.3/5 (658 download)

DOWNLOAD NOW!


Book Synopsis Mastering LLM Applications with LangChain and Hugging Face by : Hunaidkhan Pathan

Download or read book Mastering LLM Applications with LangChain and Hugging Face written by Hunaidkhan Pathan and published by BPB Publications. This book was released on 2024-09-21 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: DESCRIPTION The book is all about the basics of NLP, generative AI, and their specific component LLM. In this book, we have provided conceptual knowledge about different terminologies and concepts of NLP and NLG with practical hands-on. This comprehensive book offers a deep dive into the world of NLP and LLMs. Starting with the fundamentals of Python programming and code editors, the book gradually introduces NLP concepts, including text preprocessing, word embeddings, and transformer architectures. You will explore the architecture and capabilities of popular models like GPT-3 and BERT. The book also covers practical aspects of LLM usage for RAG applications using frameworks like LangChain and Hugging Face and deploying them in real world applications. With a focus on both theoretical knowledge and hands-on experience, this book is ideal for anyone looking to master the art of NLP and LLMs. The book also contains AWS Cloud deployment, which will help readers step into the world of cloud computing. As the book contains both theoretical and practical approaches, it will help the readers to gain confidence in the deployment of LLMs for any use cases, as well as get acquainted with the required generative AI knowledge to crack the interviews. KEY FEATURES ● Covers Python basics, NLP concepts, and terminologies, including LLM and RAG concepts. ● Provides exposure to LangChain, Hugging Face ecosystem, and chatbot creation using custom data. ● Guides on integrating chatbots with real-time applications and deploying them on AWS Cloud. WHAT YOU WILL LEARN ● Basics of Python, which contains Python concepts, installation, and code editors. ● Foundation of NLP and generative AI concepts and different terminologies being used in NLP and generative AI domain. ● LLMs and their importance in the cutting edge of AI. ● Creating chatbots using custom data using open source LLMs without spending a single penny. ● Integration of chatbots with real-world applications like Telegram. WHO THIS BOOK IS FOR This book is ideal for beginners and freshers entering the AI or ML field, as well as those at an intermediate level looking to deepen their understanding of generative AI, LLMs, and cloud deployment. TABLE OF CONTENTS 1. Introduction to Python and Code Editors 2. Installation of Python, Required Packages, and Code Editors 3. Ways to Run Python Scripts 4. Introduction to NLP and its Concepts 5. Introduction to Large Language Models 6. Introduction of LangChain, Usage and Importance 7. Introduction of Hugging Face, its Usage and Importance 8. Creating Chatbots Using Custom Data with LangChain and Hugging Face Hub 9. Hyperparameter Tuning and Fine Tuning Pre-Trained Models 10. Integrating LLMs into Real-World Applications–Case Studies 11. Deploying LLMs in Cloud Environments for Scalability 12. Future Directions: Advances in LLMs and Beyond Appendix A: Useful Tips for Efficient LLM Experimentation Appendix B: Resources and References

Mastering Large Language Models with Python

Download Mastering Large Language Models with Python PDF Online Free

Author :
Publisher : Orange Education Pvt Ltd
ISBN 13 : 8197081824
Total Pages : 547 pages
Book Rating : 4.1/5 (97 download)

DOWNLOAD NOW!


Book Synopsis Mastering Large Language Models with Python by : Raj Arun R

Download or read book Mastering Large Language Models with Python written by Raj Arun R and published by Orange Education Pvt Ltd. This book was released on 2024-04-12 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Comprehensive Guide to Leverage Generative AI in the Modern Enterprise KEY FEATURES ● Gain a comprehensive understanding of LLMs within the framework of Generative AI, from foundational concepts to advanced applications. ● Dive into practical exercises and real-world applications, accompanied by detailed code walkthroughs in Python. ● Explore LLMOps with a dedicated focus on ensuring trustworthy AI and best practices for deploying, managing, and maintaining LLMs in enterprise settings. ● Prioritize the ethical and responsible use of LLMs, with an emphasis on building models that adhere to principles of fairness, transparency, and accountability, fostering trust in AI technologies. DESCRIPTION “Mastering Large Language Models with Python” is an indispensable resource that offers a comprehensive exploration of Large Language Models (LLMs), providing the essential knowledge to leverage these transformative AI models effectively. From unraveling the intricacies of LLM architecture to practical applications like code generation and AI-driven recommendation systems, readers will gain valuable insights into implementing LLMs in diverse projects. Covering both open-source and proprietary LLMs, the book delves into foundational concepts and advanced techniques, empowering professionals to harness the full potential of these models. Detailed discussions on quantization techniques for efficient deployment, operational strategies with LLMOps, and ethical considerations ensure a well-rounded understanding of LLM implementation. Through real-world case studies, code snippets, and practical examples, readers will navigate the complexities of LLMs with confidence, paving the way for innovative solutions and organizational growth. Whether you seek to deepen your understanding, drive impactful applications, or lead AI-driven initiatives, this book equips you with the tools and insights needed to excel in the dynamic landscape of artificial intelligence. WHAT WILL YOU LEARN ● In-depth study of LLM architecture and its versatile applications across industries. ● Harness open-source and proprietary LLMs to craft innovative solutions. ● Implement LLM APIs for a wide range of tasks spanning natural language processing, audio analysis, and visual recognition. ● Optimize LLM deployment through techniques such as quantization and operational strategies like LLMOps, ensuring efficient and scalable model usage. ● Master prompt engineering techniques to fine-tune LLM outputs, enhancing quality and relevance for diverse use cases. ● Navigate the complex landscape of ethical AI development, prioritizing responsible practices to drive impactful technology adoption and advancement. WHO IS THIS BOOK FOR? This book is tailored for software engineers, data scientists, AI researchers, and technology leaders with a foundational understanding of machine learning concepts and programming. It's ideal for those looking to deepen their knowledge of Large Language Models and their practical applications in the field of AI. If you aim to explore LLMs extensively for implementing inventive solutions or spearheading AI-driven projects, this book is tailored to your needs. TABLE OF CONTENTS 1. The Basics of Large Language Models and Their Applications 2. Demystifying Open-Source Large Language Models 3. Closed-Source Large Language Models 4. LLM APIs for Various Large Language Model Tasks 5. Integrating Cohere API in Google Sheets 6. Dynamic Movie Recommendation Engine Using LLMs 7. Document-and Web-based QA Bots with Large Language Models 8. LLM Quantization Techniques and Implementation 9. Fine-tuning and Evaluation of LLMs 10. Recipes for Fine-Tuning and Evaluating LLMs 11. LLMOps - Operationalizing LLMs at Scale 12. Implementing LLMOps in Practice Using MLflow on Databricks 13. Mastering the Art of Prompt Engineering 14. Prompt Engineering Essentials and Design Patterns 15. Ethical Considerations and Regulatory Frameworks for LLMs 16. Towards Trustworthy Generative AI (A Novel Framework Inspired by Symbolic Reasoning) Index

Mastering the Data Paradox

Download Mastering the Data Paradox PDF Online Free

Author :
Publisher : Penguin Random House India Private Limited
ISBN 13 : 9357087842
Total Pages : 381 pages
Book Rating : 4.3/5 (57 download)

DOWNLOAD NOW!


Book Synopsis Mastering the Data Paradox by : Nitin Seth

Download or read book Mastering the Data Paradox written by Nitin Seth and published by Penguin Random House India Private Limited. This book was released on 2024-03-18 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are two remarkable phenomena that are unfolding almost simultaneously. The first is the emergence of a data-first world, where data has become a central driving force, shaping industries and fueling innovation. The second is the dawn of the AI age, propelled by the advent of Generative AI, that has created the possibility to leverage the data of the world for the first time. The convergence of these two, with data as the common denominator, holds immense promise and the opportunities are boundless. This book provides us with opportunities to push our thinking, to innovate, to transform and to create a better future at all levels—individual, enterprise and the world.

Mastering AI

Download Mastering AI PDF Online Free

Author :
Publisher : Bedford Square Publishers
ISBN 13 : 183501044X
Total Pages : 376 pages
Book Rating : 4.8/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Mastering AI by : Jeremy Kahn

Download or read book Mastering AI written by Jeremy Kahn and published by Bedford Square Publishers. This book was released on 2024-08-01 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: An urgent book on generative artificial intelligence exploring the risk and benefits looming in this seminal moment 'Easily the best exploration to date on the perils and promise of AI." —ASHLEE VANCE author of When the Heavens Went on Sale 'Mastering AI is a must-read. It's hard to put down'. —BETHANY McLEAN, coauthor of The Smartest Guys in the Room and The Big Fail ' A timely and urgent exploration of AI's dizzying acceleration' —BRAD STONE, author of The Everything Store The debut of ChatGPT on November 30th was a watershed moment in the history of technology. We stand on the threshold of a new age — one where content of all kinds, even software itself, will be conjured, seemingly from thin air, with simple conversation. In a culture fraught with misinformation, Mastering AI pierces through the thicket of exaggerated claims, explaining how we arrived at this moment and mapping the likely long-term impacts on business, economics, culture and society this potent technology will have. This book will serve as a guide to those dangers — as well as highlighting the technology's transformative potential — and will pinpoint concrete steps that should be taken to regulate generative AI.

Mastering Java for Data Science

Download Mastering Java for Data Science PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1785887394
Total Pages : 355 pages
Book Rating : 4.7/5 (858 download)

DOWNLOAD NOW!


Book Synopsis Mastering Java for Data Science by : Alexey Grigorev

Download or read book Mastering Java for Data Science written by Alexey Grigorev and published by Packt Publishing Ltd. This book was released on 2017-04-27 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: Use Java to create a diverse range of Data Science applications and bring Data Science into production About This Book An overview of modern Data Science and Machine Learning libraries available in Java Coverage of a broad set of topics, going from the basics of Machine Learning to Deep Learning and Big Data frameworks. Easy-to-follow illustrations and the running example of building a search engine. Who This Book Is For This book is intended for software engineers who are comfortable with developing Java applications and are familiar with the basic concepts of data science. Additionally, it will also be useful for data scientists who do not yet know Java but want or need to learn it. If you are willing to build efficient data science applications and bring them in the enterprise environment without changing the existing stack, this book is for you! What You Will Learn Get a solid understanding of the data processing toolbox available in Java Explore the data science ecosystem available in Java Find out how to approach different machine learning problems with Java Process unstructured information such as natural language text or images Create your own search engine Get state-of-the-art performance with XGBoost Learn how to build deep neural networks with DeepLearning4j Build applications that scale and process large amounts of data Deploy data science models to production and evaluate their performance In Detail Java is the most popular programming language, according to the TIOBE index, and it is a typical choice for running production systems in many companies, both in the startup world and among large enterprises. Not surprisingly, it is also a common choice for creating data science applications: it is fast and has a great set of data processing tools, both built-in and external. What is more, choosing Java for data science allows you to easily integrate solutions with existing software, and bring data science into production with less effort. This book will teach you how to create data science applications with Java. First, we will revise the most important things when starting a data science application, and then brush up the basics of Java and machine learning before diving into more advanced topics. We start by going over the existing libraries for data processing and libraries with machine learning algorithms. After that, we cover topics such as classification and regression, dimensionality reduction and clustering, information retrieval and natural language processing, and deep learning and big data. Finally, we finish the book by talking about the ways to deploy the model and evaluate it in production settings. Style and approach This is a practical guide where all the important concepts such as classification, regression, and dimensionality reduction are explained with the help of examples.

Mastering Project Discovery

Download Mastering Project Discovery PDF Online Free

Author :
Publisher : Taylor & Francis
ISBN 13 : 1040011551
Total Pages : 183 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Mastering Project Discovery by : Elliot Bendoly

Download or read book Mastering Project Discovery written by Elliot Bendoly and published by Taylor & Francis. This book was released on 2024-04-11 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introducing a comprehensive approach to invigorate project leadership, this book provides a framework – the OUtCoMES Cycle – for developing, managing, advancing, and optimizing engineering and analytics projects. All too often, issues of moral hazard and completion bias prevent engineering and analytics managers and team leaders from asking the critical question 'What’s the problem?', before committing time, energy, and resources to solve it. This book draws attention to the definition, structuring, option consideration and ultimately the addressing of the right problems, exploring the OUtCoMES Cycle framework that facilitates and energizes systematic thinking, knowledge sharing, and on-the-fly adjustment with an explicit focus on the maximization of value and ROI. Each chapter includes discussions and lessons in analytical and engineering problem identification, problem structuring, iterative problem development (mental and computational) and problem resolution, at least three embedded real-world case studies, and a closing 'Practitioner’s Recap' to contextualize key chapter takeaways. Written by a team of established academic scholars and practicing analysts and engineers, this is an accessible and culture-shifting action guide for instructors interested in training the next generation of project and analytics leaders, students of analytics and engineering, as well as practicing project leaders and principals.

Mastering Cybersecurity

Download Mastering Cybersecurity PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 :
Total Pages : 791 pages
Book Rating : 4.8/5 (688 download)

DOWNLOAD NOW!


Book Synopsis Mastering Cybersecurity by : Dr. Jason Edwards

Download or read book Mastering Cybersecurity written by Dr. Jason Edwards and published by Springer Nature. This book was released on with total page 791 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Unlocking Data with Generative AI and RAG

Download Unlocking Data with Generative AI and RAG PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1835887910
Total Pages : 346 pages
Book Rating : 4.8/5 (358 download)

DOWNLOAD NOW!


Book Synopsis Unlocking Data with Generative AI and RAG by : Keith Bourne

Download or read book Unlocking Data with Generative AI and RAG written by Keith Bourne and published by Packt Publishing Ltd. This book was released on 2024-09-27 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage cutting-edge generative AI techniques such as RAG to realize the potential of your data and drive innovation as well as gain strategic advantage Key Features Optimize data retrieval and generation using vector databases Boost decision-making and automate workflows with AI agents Overcome common challenges in implementing real-world RAG systems Purchase of the print or Kindle book includes a free PDF eBook Book Description Generative AI is helping organizations tap into their data in new ways, with retrieval-augmented generation (RAG) combining the strengths of large language models (LLMs) with internal data for more intelligent and relevant AI applications. The author harnesses his decade of ML experience in this book to equip you with the strategic insights and technical expertise needed when using RAG to drive transformative outcomes. The book explores RAG’s role in enhancing organizational operations by blending theoretical foundations with practical techniques. You’ll work with detailed coding examples using tools such as LangChain and Chroma’s vector database to gain hands-on experience in integrating RAG into AI systems. The chapters contain real-world case studies and sample applications that highlight RAG’s diverse use cases, from search engines to chatbots. You’ll learn proven methods for managing vector databases, optimizing data retrieval, effective prompt engineering, and quantitatively evaluating performance. The book also takes you through advanced integrations of RAG with cutting-edge AI agents and emerging non-LLM technologies. By the end of this book, you’ll be able to successfully deploy RAG in business settings, address common challenges, and push the boundaries of what’s possible with this revolutionary AI technique. What you will learn Understand RAG principles and their significance in generative AI Integrate LLMs with internal data for enhanced operations Master vectorization, vector databases, and vector search techniques Develop skills in prompt engineering specific to RAG and design for precise AI responses Familiarize yourself with AI agents' roles in facilitating sophisticated RAG applications Overcome scalability, data quality, and integration issues Discover strategies for optimizing data retrieval and AI interpretability Who this book is for This book is for AI researchers, data scientists, software developers, and business analysts looking to leverage RAG and generative AI to enhance data retrieval, improve AI accuracy, and drive innovation. It is particularly suited for anyone with a foundational understanding of AI who seeks practical, hands-on learning. The book offers real-world coding examples and strategies for implementing RAG effectively, making it accessible to both technical and non-technical audiences. A basic understanding of Python and Jupyter Notebooks is required.

Generative Intelligence and Intelligent Tutoring Systems

Download Generative Intelligence and Intelligent Tutoring Systems PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031630289
Total Pages : 450 pages
Book Rating : 4.0/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Generative Intelligence and Intelligent Tutoring Systems by : Angelo Sifaleras

Download or read book Generative Intelligence and Intelligent Tutoring Systems written by Angelo Sifaleras and published by Springer Nature. This book was released on with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Introducing MLOps

Download Introducing MLOps PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1098116429
Total Pages : 171 pages
Book Rating : 4.0/5 (981 download)

DOWNLOAD NOW!


Book Synopsis Introducing MLOps by : Mark Treveil

Download or read book Introducing MLOps written by Mark Treveil and published by "O'Reilly Media, Inc.". This book was released on 2020-11-30 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: More than half of the analytics and machine learning (ML) models created by organizations today never make it into production. Some of the challenges and barriers to operationalization are technical, but others are organizational. Either way, the bottom line is that models not in production can't provide business impact. This book introduces the key concepts of MLOps to help data scientists and application engineers not only operationalize ML models to drive real business change but also maintain and improve those models over time. Through lessons based on numerous MLOps applications around the world, nine experts in machine learning provide insights into the five steps of the model life cycle--Build, Preproduction, Deployment, Monitoring, and Governance--uncovering how robust MLOps processes can be infused throughout. This book helps you: Fulfill data science value by reducing friction throughout ML pipelines and workflows Refine ML models through retraining, periodic tuning, and complete remodeling to ensure long-term accuracy Design the MLOps life cycle to minimize organizational risks with models that are unbiased, fair, and explainable Operationalize ML models for pipeline deployment and for external business systems that are more complex and less standardized

Mastering Microsoft Fabric

Download Mastering Microsoft Fabric PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 :
Total Pages : 367 pages
Book Rating : 4.8/5 (688 download)

DOWNLOAD NOW!


Book Synopsis Mastering Microsoft Fabric by : Debananda Ghosh

Download or read book Mastering Microsoft Fabric written by Debananda Ghosh and published by Springer Nature. This book was released on with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Mastering NLP from Foundations to LLMs

Download Mastering NLP from Foundations to LLMs PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1804616389
Total Pages : 340 pages
Book Rating : 4.8/5 (46 download)

DOWNLOAD NOW!


Book Synopsis Mastering NLP from Foundations to LLMs by : Lior Gazit

Download or read book Mastering NLP from Foundations to LLMs written by Lior Gazit and published by Packt Publishing Ltd. This book was released on 2024-04-26 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Enhance your NLP proficiency with modern frameworks like LangChain, explore mathematical foundations and code samples, and gain expert insights into current and future trends Key Features Learn how to build Python-driven solutions with a focus on NLP, LLMs, RAGs, and GPT Master embedding techniques and machine learning principles for real-world applications Understand the mathematical foundations of NLP and deep learning designs Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionDo you want to master Natural Language Processing (NLP) but don’t know where to begin? This book will give you the right head start. Written by leaders in machine learning and NLP, Mastering NLP from Foundations to LLMs provides an in-depth introduction to techniques. Starting with the mathematical foundations of machine learning (ML), you’ll gradually progress to advanced NLP applications such as large language models (LLMs) and AI applications. You’ll get to grips with linear algebra, optimization, probability, and statistics, which are essential for understanding and implementing machine learning and NLP algorithms. You’ll also explore general machine learning techniques and find out how they relate to NLP. Next, you’ll learn how to preprocess text data, explore methods for cleaning and preparing text for analysis, and understand how to do text classification. You’ll get all of this and more along with complete Python code samples. By the end of the book, the advanced topics of LLMs’ theory, design, and applications will be discussed along with the future trends in NLP, which will feature expert opinions. You’ll also get to strengthen your practical skills by working on sample real-world NLP business problems and solutions.What you will learn Master the mathematical foundations of machine learning and NLP Implement advanced techniques for preprocessing text data and analysis Design ML-NLP systems in Python Model and classify text using traditional machine learning and deep learning methods Understand the theory and design of LLMs and their implementation for various applications in AI Explore NLP insights, trends, and expert opinions on its future direction and potential Who this book is for This book is for deep learning and machine learning researchers, NLP practitioners, ML/NLP educators, and STEM students. Professionals working with text data as part of their projects will also find plenty of useful information in this book. Beginner-level familiarity with machine learning and a basic working knowledge of Python will help you get the best out of this book.