Mastering Data Mining with Python – Find patterns hidden in your data

Download Mastering Data Mining with Python – Find patterns hidden in your data PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 178588591X
Total Pages : 269 pages
Book Rating : 4.7/5 (858 download)

DOWNLOAD NOW!


Book Synopsis Mastering Data Mining with Python – Find patterns hidden in your data by : Megan Squire

Download or read book Mastering Data Mining with Python – Find patterns hidden in your data written by Megan Squire and published by Packt Publishing Ltd. This book was released on 2016-08-29 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to create more powerful data mining applications with this comprehensive Python guide to advance data analytics techniques About This Book Dive deeper into data mining with Python – don't be complacent, sharpen your skills! From the most common elements of data mining to cutting-edge techniques, we've got you covered for any data-related challenge Become a more fluent and confident Python data-analyst, in full control of its extensive range of libraries Who This Book Is For This book is for data scientists who are already familiar with some basic data mining techniques such as SQL and machine learning, and who are comfortable with Python. If you are ready to learn some more advanced techniques in data mining in order to become a data mining expert, this is the book for you! What You Will Learn Explore techniques for finding frequent itemsets and association rules in large data sets Learn identification methods for entity matches across many different types of data Identify the basics of network mining and how to apply it to real-world data sets Discover methods for detecting the sentiment of text and for locating named entities in text Observe multiple techniques for automatically extracting summaries and generating topic models for text See how to use data mining to fix data anomalies and how to use machine learning to identify outliers in a data set In Detail Data mining is an integral part of the data science pipeline. It is the foundation of any successful data-driven strategy – without it, you'll never be able to uncover truly transformative insights. Since data is vital to just about every modern organization, it is worth taking the next step to unlock even greater value and more meaningful understanding. If you already know the fundamentals of data mining with Python, you are now ready to experiment with more interesting, advanced data analytics techniques using Python's easy-to-use interface and extensive range of libraries. In this book, you'll go deeper into many often overlooked areas of data mining, including association rule mining, entity matching, network mining, sentiment analysis, named entity recognition, text summarization, topic modeling, and anomaly detection. For each data mining technique, we'll review the state-of-the-art and current best practices before comparing a wide variety of strategies for solving each problem. We will then implement example solutions using real-world data from the domain of software engineering, and we will spend time learning how to understand and interpret the results we get. By the end of this book, you will have solid experience implementing some of the most interesting and relevant data mining techniques available today, and you will have achieved a greater fluency in the important field of Python data analytics. Style and approach This book will teach you the intricacies in applying data mining using real-world scenarios and will act as a very practical solution to your data mining needs.

Learning Data Mining with Python

Download Learning Data Mining with Python PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1784391204
Total Pages : 344 pages
Book Rating : 4.7/5 (843 download)

DOWNLOAD NOW!


Book Synopsis Learning Data Mining with Python by : Robert Layton

Download or read book Learning Data Mining with Python written by Robert Layton and published by Packt Publishing Ltd. This book was released on 2015-07-29 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: The next step in the information age is to gain insights from the deluge of data coming our way. Data mining provides a way of finding this insight, and Python is one of the most popular languages for data mining, providing both power and flexibility in analysis. This book teaches you to design and develop data mining applications using a variety of datasets, starting with basic classification and affinity analysis. Next, we move on to more complex data types including text, images, and graphs. In every chapter, we create models that solve real-world problems. There is a rich and varied set of libraries available in Python for data mining. This book covers a large number, including the IPython Notebook, pandas, scikit-learn and NLTK. Each chapter of this book introduces you to new algorithms and techniques. By the end of the book, you will gain a large insight into using Python for data mining, with a good knowledge and understanding of the algorithms and implementations.

Optimizing Big Data Management and Industrial Systems With Intelligent Techniques

Download Optimizing Big Data Management and Industrial Systems With Intelligent Techniques PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1522551387
Total Pages : 250 pages
Book Rating : 4.5/5 (225 download)

DOWNLOAD NOW!


Book Synopsis Optimizing Big Data Management and Industrial Systems With Intelligent Techniques by : Öner, Sultan Ceren

Download or read book Optimizing Big Data Management and Industrial Systems With Intelligent Techniques written by Öner, Sultan Ceren and published by IGI Global. This book was released on 2018-12-07 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: In order to survive an increasingly competitive market, corporations must adopt and employ optimization techniques and big data analytics for more efficient product development and value creation. Understanding the strengths, weaknesses, opportunities, and threats of new techniques and manufacturing processes allows companies to succeed during the rise of Industry 4.0. Optimizing Big Data Management and Industrial Systems With Intelligent Techniques explores optimization techniques, recommendation systems, and manufacturing processes that support the evaluation of cyber-physical systems, end-to-end engineering, and digitalized control systems. Featuring coverage on a broad range of topics such as digital economy, fuzzy logic, and data linkage methods, this book is ideally designed for manufacturers, engineers, professionals, managers, academicians, and students.

Data Mining: Concepts and Techniques

Download Data Mining: Concepts and Techniques PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0123814804
Total Pages : 740 pages
Book Rating : 4.1/5 (238 download)

DOWNLOAD NOW!


Book Synopsis Data Mining: Concepts and Techniques by : Jiawei Han

Download or read book Data Mining: Concepts and Techniques written by Jiawei Han and published by Elsevier. This book was released on 2011-06-09 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data

Doing Computational Social Science

Download Doing Computational Social Science PDF Online Free

Author :
Publisher : SAGE
ISBN 13 : 1529737591
Total Pages : 556 pages
Book Rating : 4.5/5 (297 download)

DOWNLOAD NOW!


Book Synopsis Doing Computational Social Science by : John McLevey

Download or read book Doing Computational Social Science written by John McLevey and published by SAGE. This book was released on 2021-12-15 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational approaches offer exciting opportunities for us to do social science differently. This beginner’s guide discusses a range of computational methods and how to use them to study the problems and questions you want to research. It assumes no knowledge of programming, offering step-by-step guidance for coding in Python and drawing on examples of real data analysis to demonstrate how you can apply each approach in any discipline. The book also: Considers important principles of social scientific computing, including transparency, accountability and reproducibility. Understands the realities of completing research projects and offers advice for dealing with issues such as messy or incomplete data and systematic biases. Empowers you to learn at your own pace, with online resources including screencast tutorials and datasets that enable you to practice your skills and get up to speed. For anyone who wants to use computational methods to conduct a social science research project, this book equips you with the skills, good habits and best working practices to do rigorous, high quality work.

Mastering Python for Data Science

Download Mastering Python for Data Science PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1784392626
Total Pages : 294 pages
Book Rating : 4.7/5 (843 download)

DOWNLOAD NOW!


Book Synopsis Mastering Python for Data Science by : Samir Madhavan

Download or read book Mastering Python for Data Science written by Samir Madhavan and published by Packt Publishing Ltd. This book was released on 2015-08-31 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore the world of data science through Python and learn how to make sense of data About This Book Master data science methods using Python and its libraries Create data visualizations and mine for patterns Advanced techniques for the four fundamentals of Data Science with Python - data mining, data analysis, data visualization, and machine learning Who This Book Is For If you are a Python developer who wants to master the world of data science then this book is for you. Some knowledge of data science is assumed. What You Will Learn Manage data and perform linear algebra in Python Derive inferences from the analysis by performing inferential statistics Solve data science problems in Python Create high-end visualizations using Python Evaluate and apply the linear regression technique to estimate the relationships among variables. Build recommendation engines with the various collaborative filtering algorithms Apply the ensemble methods to improve your predictions Work with big data technologies to handle data at scale In Detail Data science is a relatively new knowledge domain which is used by various organizations to make data driven decisions. Data scientists have to wear various hats to work with data and to derive value from it. The Python programming language, beyond having conquered the scientific community in the last decade, is now an indispensable tool for the data science practitioner and a must-know tool for every aspiring data scientist. Using Python will offer you a fast, reliable, cross-platform, and mature environment for data analysis, machine learning, and algorithmic problem solving. This comprehensive guide helps you move beyond the hype and transcend the theory by providing you with a hands-on, advanced study of data science. Beginning with the essentials of Python in data science, you will learn to manage data and perform linear algebra in Python. You will move on to deriving inferences from the analysis by performing inferential statistics, and mining data to reveal hidden patterns and trends. You will use the matplot library to create high-end visualizations in Python and uncover the fundamentals of machine learning. Next, you will apply the linear regression technique and also learn to apply the logistic regression technique to your applications, before creating recommendation engines with various collaborative filtering algorithms and improving your predictions by applying the ensemble methods. Finally, you will perform K-means clustering, along with an analysis of unstructured data with different text mining techniques and leveraging the power of Python in big data analytics. Style and approach This book is an easy-to-follow, comprehensive guide on data science using Python. The topics covered in the book can all be used in real world scenarios.

Mastering Social Media Mining with Python

Download Mastering Social Media Mining with Python PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1783552026
Total Pages : 333 pages
Book Rating : 4.7/5 (835 download)

DOWNLOAD NOW!


Book Synopsis Mastering Social Media Mining with Python by : Marco Bonzanini

Download or read book Mastering Social Media Mining with Python written by Marco Bonzanini and published by Packt Publishing Ltd. This book was released on 2016-07-29 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: Acquire and analyze data from all corners of the social web with Python About This Book Make sense of highly unstructured social media data with the help of the insightful use cases provided in this guide Use this easy-to-follow, step-by-step guide to apply analytics to complicated and messy social data This is your one-stop solution to fetching, storing, analyzing, and visualizing social media data Who This Book Is For This book is for intermediate Python developers who want to engage with the use of public APIs to collect data from social media platforms and perform statistical analysis in order to produce useful insights from data. The book assumes a basic understanding of the Python Standard Library and provides practical examples to guide you toward the creation of your data analysis project based on social data. What You Will Learn Interact with a social media platform via their public API with Python Store social data in a convenient format for data analysis Slice and dice social data using Python tools for data science Apply text analytics techniques to understand what people are talking about on social media Apply advanced statistical and analytical techniques to produce useful insights from data Build beautiful visualizations with web technologies to explore data and present data products In Detail Your social media is filled with a wealth of hidden data – unlock it with the power of Python. Transform your understanding of your clients and customers when you use Python to solve the problems of understanding consumer behavior and turning raw data into actionable customer insights. This book will help you acquire and analyze data from leading social media sites. It will show you how to employ scientific Python tools to mine popular social websites such as Facebook, Twitter, Quora, and more. Explore the Python libraries used for social media mining, and get the tips, tricks, and insider insight you need to make the most of them. Discover how to develop data mining tools that use a social media API, and how to create your own data analysis projects using Python for clear insight from your social data. Style and approach This practical, hands-on guide will help you learn everything you need to perform data mining for social media. Throughout the book, we take an example-oriented approach to use Python for data analysis and provide useful tips and tricks that you can use in day-to-day tasks.

Data Mining For Dummies

Download Data Mining For Dummies PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118893166
Total Pages : 422 pages
Book Rating : 4.1/5 (188 download)

DOWNLOAD NOW!


Book Synopsis Data Mining For Dummies by : Meta S. Brown

Download or read book Data Mining For Dummies written by Meta S. Brown and published by John Wiley & Sons. This book was released on 2014-09-04 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: Delve into your data for the key to success Data mining is quickly becoming integral to creating value and business momentum. The ability to detect unseen patterns hidden in the numbers exhaustively generated by day-to-day operations allows savvy decision-makers to exploit every tool at their disposal in the pursuit of better business. By creating models and testing whether patterns hold up, it is possible to discover new intelligence that could change your business's entire paradigm for a more successful outcome. Data Mining for Dummies shows you why it doesn't take a data scientist to gain this advantage, and empowers average business people to start shaping a process relevant to their business's needs. In this book, you'll learn the hows and whys of mining to the depths of your data, and how to make the case for heavier investment into data mining capabilities. The book explains the details of the knowledge discovery process including: Model creation, validity testing, and interpretation Effective communication of findings Available tools, both paid and open-source Data selection, transformation, and evaluation Data Mining for Dummies takes you step-by-step through a real-world data-mining project using open-source tools that allow you to get immediate hands-on experience working with large amounts of data. You'll gain the confidence you need to start making data mining practices a routine part of your successful business. If you're serious about doing everything you can to push your company to the top, Data Mining for Dummies is your ticket to effective data mining.

Numerical Computing with Python

Download Numerical Computing with Python PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1789957222
Total Pages : 676 pages
Book Rating : 4.7/5 (899 download)

DOWNLOAD NOW!


Book Synopsis Numerical Computing with Python by : Pratap Dangeti

Download or read book Numerical Computing with Python written by Pratap Dangeti and published by Packt Publishing Ltd. This book was released on 2018-12-21 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understand, explore, and effectively present data using the powerful data visualization techniques of Python Key FeaturesUse the power of Pandas and Matplotlib to easily solve data mining issuesUnderstand the basics of statistics to build powerful predictive data modelsGrasp data mining concepts with helpful use-cases and examplesBook Description Data mining, or parsing the data to extract useful insights, is a niche skill that can transform your career as a data scientist Python is a flexible programming language that is equipped with a strong suite of libraries and toolkits, and gives you the perfect platform to sift through your data and mine the insights you seek. This Learning Path is designed to familiarize you with the Python libraries and the underlying statistics that you need to get comfortable with data mining. You will learn how to use Pandas, Python's popular library to analyze different kinds of data, and leverage the power of Matplotlib to generate appealing and impressive visualizations for the insights you have derived. You will also explore different machine learning techniques and statistics that enable you to build powerful predictive models. By the end of this Learning Path, you will have the perfect foundation to take your data mining skills to the next level and set yourself on the path to become a sought-after data science professional. This Learning Path includes content from the following Packt products: Statistics for Machine Learning by Pratap DangetiMatplotlib 2.x By Example by Allen Yu, Claire Chung, Aldrin YimPandas Cookbook by Theodore PetrouWhat you will learnUnderstand the statistical fundamentals to build data modelsSplit data into independent groups Apply aggregations and transformations to each groupCreate impressive data visualizationsPrepare your data and design models Clean up data to ease data analysis and visualizationCreate insightful visualizations with Matplotlib and SeabornCustomize the model to suit your own predictive goalsWho this book is for If you want to learn how to use the many libraries of Python to extract impactful information from your data and present it as engaging visuals, then this is the ideal Learning Path for you. Some basic knowledge of Python is enough to get started with this Learning Path.

Machine Learning for Data Mining

Download Machine Learning for Data Mining PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1838821554
Total Pages : 247 pages
Book Rating : 4.8/5 (388 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Data Mining by : Jesus Salcedo

Download or read book Machine Learning for Data Mining written by Jesus Salcedo and published by Packt Publishing Ltd. This book was released on 2019-04-30 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get efficient in performing data mining and machine learning using IBM SPSS Modeler Key FeaturesLearn how to apply machine learning techniques in the field of data scienceUnderstand when to use different data mining techniques, how to set up different analyses, and how to interpret the resultsA step-by-step approach to improving model development and performanceBook Description Machine learning (ML) combined with data mining can give you amazing results in your data mining work by empowering you with several ways to look at data. This book will help you improve your data mining techniques by using smart modeling techniques. This book will teach you how to implement ML algorithms and techniques in your data mining work. It will enable you to pair the best algorithms with the right tools and processes. You will learn how to identify patterns and make predictions with minimal human intervention. You will build different types of ML models, such as the neural network, the Support Vector Machines (SVMs), and the Decision tree. You will see how all of these models works and what kind of data in the dataset they are suited for. You will learn how to combine the results of different models in order to improve accuracy. Topics such as removing noise and handling errors will give you an added edge in model building and optimization. By the end of this book, you will be able to build predictive models and extract information of interest from the dataset What you will learnHone your model-building skills and create the most accurate modelsUnderstand how predictive machine learning models workPrepare your data to acquire the best possible resultsCombine models in order to suit the requirements of different types of dataAnalyze single and multiple models and understand their combined resultsDerive worthwhile insights from your data using histograms and graphsWho this book is for If you are a data scientist, data analyst, and data mining professional and are keen to achieve a 30% higher salary by adding machine learning to your skillset, then this is the ideal book for you. You will learn to apply machine learning techniques to various data mining challenges. No prior knowledge of machine learning is assumed.

Text Analytics with Python

Download Text Analytics with Python PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484223888
Total Pages : 397 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis Text Analytics with Python by : Dipanjan Sarkar

Download or read book Text Analytics with Python written by Dipanjan Sarkar and published by Apress. This book was released on 2016-11-30 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: Derive useful insights from your data using Python. You will learn both basic and advanced concepts, including text and language syntax, structure, and semantics. You will focus on algorithms and techniques, such as text classification, clustering, topic modeling, and text summarization. Text Analytics with Python teaches you the techniques related to natural language processing and text analytics, and you will gain the skills to know which technique is best suited to solve a particular problem. You will look at each technique and algorithm with both a bird's eye view to understand how it can be used as well as with a microscopic view to understand the mathematical concepts and to implement them to solve your own problems. What You Will Learn: Understand the major concepts and techniques of natural language processing (NLP) and text analytics, including syntax and structure Build a text classification system to categorize news articles, analyze app or game reviews using topic modeling and text summarization, and cluster popular movie synopses and analyze the sentiment of movie reviews Implement Python and popular open source libraries in NLP and text analytics, such as the natural language toolkit (nltk), gensim, scikit-learn, spaCy and Pattern Who This Book Is For : IT professionals, analysts, developers, linguistic experts, data scientists, and anyone with a keen interest in linguistics, analytics, and generating insights from textual data

Mastering Python Data Visualization

Download Mastering Python Data Visualization PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1783988339
Total Pages : 372 pages
Book Rating : 4.7/5 (839 download)

DOWNLOAD NOW!


Book Synopsis Mastering Python Data Visualization by : Kirthi Raman

Download or read book Mastering Python Data Visualization written by Kirthi Raman and published by Packt Publishing Ltd. This book was released on 2015-10-27 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generate effective results in a variety of visually appealing charts using the plotting packages in Python About This Book Explore various tools and their strengths while building meaningful representations that can make it easier to understand data Packed with computational methods and algorithms in diverse fields of science Written in an easy-to-follow categorical style, this book discusses some niche techniques that will make your code easier to work with and reuse Who This Book Is For If you are a Python developer who performs data visualization and wants to develop existing knowledge about Python to build analytical results and produce some amazing visual display, then this book is for you. A basic knowledge level and understanding of Python libraries is assumed. What You Will Learn Gather, cleanse, access, and map data to a visual framework Recognize which visualization method is applicable and learn best practices for data visualization Get acquainted with reader-driven narratives and author-driven narratives and the principles of perception Understand why Python is an effective tool to be used for numerical computation much like MATLAB, and explore some interesting data structures that come with it Explore with various visualization choices how Python can be very useful in computation in the field of finance and statistics Get to know why Python is the second choice after Java, and is used frequently in the field of machine learning Compare Python with other visualization approaches using Julia and a JavaScript-based framework such as D3.js Discover how Python can be used in conjunction with NoSQL such as Hive to produce results efficiently in a distributed environment In Detail Python has a handful of open source libraries for numerical computations involving optimization, linear algebra, integration, interpolation, and other special functions using array objects, machine learning, data mining, and plotting. Pandas have a productive environment for data analysis. These libraries have a specific purpose and play an important role in the research into diverse domains including economics, finance, biological sciences, social science, health care, and many more. The variety of tools and approaches available within Python community is stunning, and can bolster and enhance visual story experiences. This book offers practical guidance to help you on the journey to effective data visualization. Commencing with a chapter on the data framework, which explains the transformation of data into information and eventually knowledge, this book subsequently covers the complete visualization process using the most popular Python libraries with working examples. You will learn the usage of Numpy, Scipy, IPython, MatPlotLib, Pandas, Patsy, and Scikit-Learn with a focus on generating results that can be visualized in many different ways. Further chapters are aimed at not only showing advanced techniques such as interactive plotting; numerical, graphical linear, and non-linear regression; clustering and classification, but also in helping you understand the aesthetics and best practices of data visualization. The book concludes with interesting examples such as social networks, directed graph examples in real-life, data structures appropriate for these problems, and network analysis. By the end of this book, you will be able to effectively solve a broad set of data analysis problems. Style and approach The approach of this book is not step by step, but rather categorical. The categories are based on fields such as bioinformatics, statistical and machine learning, financial computation, and linear algebra. This approach is beneficial for the community in many different fields of work and also helps you learn how one approach can make sense across many fields

Advanced Machine Learning with Python

Download Advanced Machine Learning with Python PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1784393835
Total Pages : 278 pages
Book Rating : 4.7/5 (843 download)

DOWNLOAD NOW!


Book Synopsis Advanced Machine Learning with Python by : John Hearty

Download or read book Advanced Machine Learning with Python written by John Hearty and published by Packt Publishing Ltd. This book was released on 2016-07-28 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solve challenging data science problems by mastering cutting-edge machine learning techniques in Python About This Book Resolve complex machine learning problems and explore deep learning Learn to use Python code for implementing a range of machine learning algorithms and techniques A practical tutorial that tackles real-world computing problems through a rigorous and effective approach Who This Book Is For This title is for Python developers and analysts or data scientists who are looking to add to their existing skills by accessing some of the most powerful recent trends in data science. If you've ever considered building your own image or text-tagging solution, or of entering a Kaggle contest for instance, this book is for you! Prior experience of Python and grounding in some of the core concepts of machine learning would be helpful. What You Will Learn Compete with top data scientists by gaining a practical and theoretical understanding of cutting-edge deep learning algorithms Apply your new found skills to solve real problems, through clearly-explained code for every technique and test Automate large sets of complex data and overcome time-consuming practical challenges Improve the accuracy of models and your existing input data using powerful feature engineering techniques Use multiple learning techniques together to improve the consistency of results Understand the hidden structure of datasets using a range of unsupervised techniques Gain insight into how the experts solve challenging data problems with an effective, iterative, and validation-focused approach Improve the effectiveness of your deep learning models further by using powerful ensembling techniques to strap multiple models together In Detail Designed to take you on a guided tour of the most relevant and powerful machine learning techniques in use today by top data scientists, this book is just what you need to push your Python algorithms to maximum potential. Clear examples and detailed code samples demonstrate deep learning techniques, semi-supervised learning, and more - all whilst working with real-world applications that include image, music, text, and financial data. The machine learning techniques covered in this book are at the forefront of commercial practice. They are applicable now for the first time in contexts such as image recognition, NLP and web search, computational creativity, and commercial/financial data modeling. Deep Learning algorithms and ensembles of models are in use by data scientists at top tech and digital companies, but the skills needed to apply them successfully, while in high demand, are still scarce. This book is designed to take the reader on a guided tour of the most relevant and powerful machine learning techniques. Clear descriptions of how techniques work and detailed code examples demonstrate deep learning techniques, semi-supervised learning and more, in real world applications. We will also learn about NumPy and Theano. By this end of this book, you will learn a set of advanced Machine Learning techniques and acquire a broad set of powerful skills in the area of feature selection & feature engineering. Style and approach This book focuses on clarifying the theory and code behind complex algorithms to make them practical, useable, and well-understood. Each topic is described with real-world applications, providing both broad contextual coverage and detailed guidance.

Data Mining and Data Warehousing

Download Data Mining and Data Warehousing PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 110858585X
Total Pages : 514 pages
Book Rating : 4.1/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Data Mining and Data Warehousing by : Parteek Bhatia

Download or read book Data Mining and Data Warehousing written by Parteek Bhatia and published by Cambridge University Press. This book was released on 2019-06-27 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written in lucid language, this valuable textbook brings together fundamental concepts of data mining and data warehousing in a single volume. Important topics including information theory, decision tree, Naïve Bayes classifier, distance metrics, partitioning clustering, associate mining, data marts and operational data store are discussed comprehensively. The textbook is written to cater to the needs of undergraduate students of computer science, engineering and information technology for a course on data mining and data warehousing. The text simplifies the understanding of the concepts through exercises and practical examples. Chapters such as classification, associate mining and cluster analysis are discussed in detail with their practical implementation using Weka and R language data mining tools. Advanced topics including big data analytics, relational data models and NoSQL are discussed in detail. Pedagogical features including unsolved problems and multiple-choice questions are interspersed throughout the book for better understanding.

Mining of Massive Datasets

Download Mining of Massive Datasets PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107077230
Total Pages : 480 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Mining of Massive Datasets by : Jure Leskovec

Download or read book Mining of Massive Datasets written by Jure Leskovec and published by Cambridge University Press. This book was released on 2014-11-13 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets.

Exploring SAS Viya

Download Exploring SAS Viya PDF Online Free

Author :
Publisher :
ISBN 13 : 9781642955880
Total Pages : 126 pages
Book Rating : 4.9/5 (558 download)

DOWNLOAD NOW!


Book Synopsis Exploring SAS Viya by : Sas Education

Download or read book Exploring SAS Viya written by Sas Education and published by . This book was released on 2020-01-10 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: SAS Visual Data Mining and Machine Learning, powered by SAS Viya, means that users of all skill levels can visually explore data on their own while drawing on powerful in-memory technologies for faster analytic computations and discoveries. You can manually program with custom code or use the features in SAS Studio, Model Studio, and SAS Visual Analytics to automate your data manipulation and modeling. These programs offer a flexible, easy-to-use, self-service environment that can scale on an enterprise-wide level. In this book, we will explore some of the many features of SAS Visual Data Mining and Machine Learning including: programming in the Python interface; new, advanced data mining and machine learning procedures; pipeline building in Model Studio, and model building and comparison in SAS Visual Analytics.

Learn Data Mining Through Excel

Download Learn Data Mining Through Excel PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484259823
Total Pages : 223 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis Learn Data Mining Through Excel by : Hong Zhou

Download or read book Learn Data Mining Through Excel written by Hong Zhou and published by Apress. This book was released on 2020-06-13 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: Use popular data mining techniques in Microsoft Excel to better understand machine learning methods. Software tools and programming language packages take data input and deliver data mining results directly, presenting no insight on working mechanics and creating a chasm between input and output. This is where Excel can help. Excel allows you to work with data in a transparent manner. When you open an Excel file, data is visible immediately and you can work with it directly. Intermediate results can be examined while you are conducting your mining task, offering a deeper understanding of how data is manipulated and results are obtained. These are critical aspects of the model construction process that are hidden in software tools and programming language packages. This book teaches you data mining through Excel. You will learn how Excel has an advantage in data mining when the data sets are not too large. It can give you a visual representation of data mining, building confidence in your results. You will go through every step manually, which offers not only an active learning experience, but teaches you how the mining process works and how to find the internal hidden patterns inside the data. What You Will Learn Comprehend data mining using a visual step-by-step approachBuild on a theoretical introduction of a data mining method, followed by an Excel implementationUnveil the mystery behind machine learning algorithms, making a complex topic accessible to everyoneBecome skilled in creative uses of Excel formulas and functionsObtain hands-on experience with data mining and Excel Who This Book Is For Anyone who is interested in learning data mining or machine learning, especially data science visual learners and people skilled in Excel, who would like to explore data science topics and/or expand their Excel skills. A basic or beginner level understanding of Excel is recommended.