Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Make Space For Geometry
Download Make Space For Geometry full books in PDF, epub, and Kindle. Read online Make Space For Geometry ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis A Vector Space Approach to Geometry by : Melvin Hausner
Download or read book A Vector Space Approach to Geometry written by Melvin Hausner and published by Courier Dover Publications. This book was released on 2018-10-17 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: A fascinating exploration of the correlation between geometry and linear algebra, this text also offers elementary explanations of the role of geometry in other branches of math and science. 1965 edition.
Download or read book Make: Geometry written by Joan Horvath and published by Make Community, LLC. This book was released on 2021-07-31 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometry, of all the branches of mathematics, is the one that is most easily visualized by making something. However, it is all too easy to reduce it to reams of formulas to memorize and proofs to replicate. This book aims to take geometry back to its practical roots with 3D printed models and puzzles as well as demonstrations with household objects like flashlights and paper towel tubes. This is not a traditional geometry textbook, but rather builds up understanding of geometry concepts encountered primarily in middle school while also bringing in elements of concepts normally learned much later. Some of the models are counterintuitive, and figuring out how and why they work will both entertain and give insights. Two final chapters suggesting open-ended projects in astronomy and physics, and art and architecture, allow for deeper understanding and integration of the learning in the rest of the book.
Book Synopsis Designing Learning Environments for Developing Understanding of Geometry and Space by : Richard Lehrer
Download or read book Designing Learning Environments for Developing Understanding of Geometry and Space written by Richard Lehrer and published by Routledge. This book was released on 1998 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume reflects an appreciation of the interactive roles of subject matter, teacher, student, and technologies in designing classrooms that promote understanding of geometry and space. Although these elements of geometry education are mutually constituted, the book is organized to highlight, first, the editors' vision of a general geometry education; second, the development of student thinking in everyday and classroom contexts; and third, the role of technologies. Rather than looking to high school geometry as the locus--and all too often, the apex--of geometric reasoning, the contributors to this volume suggest that reasoning about space can and should be successfully integrated with other forms of mathematics, starting at the elementary level and continuing through high school. Reintegrating spatial reasoning into the mathematical mainstream--indeed, placing it at the core of K-12 mathematics environments that promote learning with understanding--will mean increased attention to problems in modeling, structure, and design and reinvigoration of traditional topics such as measure, dimension, and form. Further, the editors' position is that the teaching of geometry and spatial visualization in school should not be compressed into a characterization of Greek geometry, but should include attention to contributions to the mathematics of space that developed subsequent to those of the Greeks. This volume is essential reading for those involved in mathematics education at all levels, including university faculty, researchers, and graduate students.
Book Synopsis Symmetry, Shape and Space by : L.Christine Kinsey
Download or read book Symmetry, Shape and Space written by L.Christine Kinsey and published by Springer Science & Business Media. This book was released on 2006-05-09 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book will appeal to at least three groups of readers: prospective high school teachers, liberal arts students, and parents whose children are studying high school or college math. It is modern in its selection of topics, and in the learning models used by the authors. The book covers some exciting but non-traditional topics from the subject area of geometry. It is also intended for undergraduates and tries to engage their interest in mathematics. Many innovative pedagogical modes are used throughout.
Book Synopsis Mathematizing Space by : Vincenzo De Risi
Download or read book Mathematizing Space written by Vincenzo De Risi and published by Birkhäuser. This book was released on 2015-01-31 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects the papers of the conference held in Berlin, Germany, 27-29 August 2012, on 'Space, Geometry and the Imagination from Antiquity to the Modern Age'. The conference was a joint effort by the Max Planck Institute for the History of Science (Berlin) and the Centro die Ricerca Matematica Ennio De Giorgi (Pisa).
Book Synopsis The Four Pillars of Geometry by : John Stillwell
Download or read book The Four Pillars of Geometry written by John Stillwell and published by Springer Science & Business Media. This book was released on 2005-08-09 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is unique in that it looks at geometry from 4 different viewpoints - Euclid-style axioms, linear algebra, projective geometry, and groups and their invariants Approach makes the subject accessible to readers of all mathematical tastes, from the visual to the algebraic Abundantly supplemented with figures and exercises
Book Synopsis The Geometry of Domains in Space by : Steven G. Krantz
Download or read book The Geometry of Domains in Space written by Steven G. Krantz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: The analysis of Euclidean space is well-developed. The classical Lie groups that act naturally on Euclidean space-the rotations, dilations, and trans lations-have both shaped and guided this development. In particular, the Fourier transform and the theory of translation invariant operators (convolution transforms) have played a central role in this analysis. Much modern work in analysis takes place on a domain in space. In this context the tools, perforce, must be different. No longer can we expect there to be symmetries. Correspondingly, there is no longer any natural way to apply the Fourier transform. Pseudodifferential operators and Fourier integral operators can playa role in solving some of the problems, but other problems require new, more geometric, ideas. At a more basic level, the analysis of a smoothly bounded domain in space requires a great deal of preliminary spadework. Tubular neighbor hoods, the second fundamental form, the notion of "positive reach", and the implicit function theorem are just some of the tools that need to be invoked regularly to set up this analysis. The normal and tangent bundles become part of the language of classical analysis when that analysis is done on a domain. Many of the ideas in partial differential equations-such as Egorov's canonical transformation theorem-become rather natural when viewed in geometric language. Many of the questions that are natural to an analyst-such as extension theorems for various classes of functions-are most naturally formulated using ideas from geometry.
Download or read book Shape written by Jordan Ellenberg and published by Penguin. This book was released on 2021-05-25 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: An instant New York Times Bestseller! “Unreasonably entertaining . . . reveals how geometric thinking can allow for everything from fairer American elections to better pandemic planning.” —The New York Times From the New York Times-bestselling author of How Not to Be Wrong—himself a world-class geometer—a far-ranging exploration of the power of geometry, which turns out to help us think better about practically everything. How should a democracy choose its representatives? How can you stop a pandemic from sweeping the world? How do computers learn to play Go, and why is learning Go so much easier for them than learning to read a sentence? Can ancient Greek proportions predict the stock market? (Sorry, no.) What should your kids learn in school if they really want to learn to think? All these are questions about geometry. For real. If you're like most people, geometry is a sterile and dimly remembered exercise you gladly left behind in the dust of ninth grade, along with your braces and active romantic interest in pop singers. If you recall any of it, it's plodding through a series of miniscule steps only to prove some fact about triangles that was obvious to you in the first place. That's not geometry. Okay, it is geometry, but only a tiny part, which has as much to do with geometry in all its flush modern richness as conjugating a verb has to do with a great novel. Shape reveals the geometry underneath some of the most important scientific, political, and philosophical problems we face. Geometry asks: Where are things? Which things are near each other? How can you get from one thing to another thing? Those are important questions. The word "geometry"comes from the Greek for "measuring the world." If anything, that's an undersell. Geometry doesn't just measure the world—it explains it. Shape shows us how.
Book Synopsis King of Infinite Space by : Siobhan Roberts
Download or read book King of Infinite Space written by Siobhan Roberts and published by . This book was released on 2007 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometry is far more than just shapes and numbers. It governs much of our lives, from architecture and data-mining technology to aerodynamic car design, life-like characters in animated movies, the molecules of food, even our own body chemistry. This title discusses the groundbreaking work of Donald Coxeter, the greatest geometer of his age.
Book Synopsis A Course in Metric Geometry by : Dmitri Burago
Download or read book A Course in Metric Geometry written by Dmitri Burago and published by American Mathematical Society. This book was released on 2022-01-27 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: “Metric geometry” is an approach to geometry based on the notion of length on a topological space. This approach experienced a very fast development in the last few decades and penetrated into many other mathematical disciplines, such as group theory, dynamical systems, and partial differential equations. The objective of this graduate textbook is twofold: to give a detailed exposition of basic notions and techniques used in the theory of length spaces, and, more generally, to offer an elementary introduction into a broad variety of geometrical topics related to the notion of distance, including Riemannian and Carnot-Carathéodory metrics, the hyperbolic plane, distance-volume inequalities, asymptotic geometry (large scale, coarse), Gromov hyperbolic spaces, convergence of metric spaces, and Alexandrov spaces (non-positively and non-negatively curved spaces). The authors tend to work with “easy-to-touch” mathematical objects using “easy-to-visualize” methods. The authors set a challenging goal of making the core parts of the book accessible to first-year graduate students. Most new concepts and methods are introduced and illustrated using simplest cases and avoiding technicalities. The book contains many exercises, which form a vital part of the exposition.
Book Synopsis Conceptual Spaces by : Peter Gardenfors
Download or read book Conceptual Spaces written by Peter Gardenfors and published by MIT Press. This book was released on 2004-01-30 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: Within cognitive science, two approaches currently dominate the problem of modeling representations. The symbolic approach views cognition as computation involving symbolic manipulation. Connectionism, a special case of associationism, models associations using artificial neuron networks. Peter Gärdenfors offers his theory of conceptual representations as a bridge between the symbolic and connectionist approaches. Symbolic representation is particularly weak at modeling concept learning, which is paramount for understanding many cognitive phenomena. Concept learning is closely tied to the notion of similarity, which is also poorly served by the symbolic approach. Gärdenfors's theory of conceptual spaces presents a framework for representing information on the conceptual level. A conceptual space is built up from geometrical structures based on a number of quality dimensions. The main applications of the theory are on the constructive side of cognitive science: as a constructive model the theory can be applied to the development of artificial systems capable of solving cognitive tasks. Gärdenfors also shows how conceptual spaces can serve as an explanatory framework for a number of empirical theories, in particular those concerning concept formation, induction, and semantics. His aim is to present a coherent research program that can be used as a basis for more detailed investigations.
Book Synopsis The Shape of Inner Space by : Shing-Tung Yau
Download or read book The Shape of Inner Space written by Shing-Tung Yau and published by Il Saggiatore. This book was released on 2010-09-07 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: The leading mind behind the mathematics of string theory discusses how geometry explains the universe we see. Illustrations.
Book Synopsis Lectures on Curves, Surfaces and Projective Varieties by : Mauro Beltrametti
Download or read book Lectures on Curves, Surfaces and Projective Varieties written by Mauro Beltrametti and published by European Mathematical Society. This book was released on 2009 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a wide-ranging introduction to algebraic geometry along classical lines. It consists of lectures on topics in classical algebraic geometry, including the basic properties of projective algebraic varieties, linear systems of hypersurfaces, algebraic curves (with special emphasis on rational curves), linear series on algebraic curves, Cremona transformations, rational surfaces, and notable examples of special varieties like the Segre, Grassmann, and Veronese varieties. An integral part and special feature of the presentation is the inclusion of many exercises, not easy to find in the literature and almost all with complete solutions. The text is aimed at students in the last two years of an undergraduate program in mathematics. It contains some rather advanced topics suitable for specialized courses at the advanced undergraduate or beginning graduate level, as well as interesting topics for a senior thesis. The prerequisites have been deliberately limited to basic elements of projective geometry and abstract algebra. Thus, for example, some knowledge of the geometry of subspaces and properties of fields is assumed. The book will be welcomed by teachers and students of algebraic geometry who are seeking a clear and panoramic path leading from the basic facts about linear subspaces, conics and quadrics to a systematic discussion of classical algebraic varieties and the tools needed to study them. The text provides a solid foundation for approaching more advanced and abstract literature.
Book Synopsis Low-Dimensional Geometry by : Francis Bonahon
Download or read book Low-Dimensional Geometry written by Francis Bonahon and published by American Mathematical Soc.. This book was released on 2009-07-14 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of 3-dimensional spaces brings together elements from several areas of mathematics. The most notable are topology and geometry, but elements of number theory and analysis also make appearances. In the past 30 years, there have been striking developments in the mathematics of 3-dimensional manifolds. This book aims to introduce undergraduate students to some of these important developments. Low-Dimensional Geometry starts at a relatively elementary level, and its early chapters can be used as a brief introduction to hyperbolic geometry. However, the ultimate goal is to describe the very recently completed geometrization program for 3-dimensional manifolds. The journey to reach this goal emphasizes examples and concrete constructions as an introduction to more general statements. This includes the tessellations associated to the process of gluing together the sides of a polygon. Bending some of these tessellations provides a natural introduction to 3-dimensional hyperbolic geometry and to the theory of kleinian groups, and it eventually leads to a discussion of the geometrization theorems for knot complements and 3-dimensional manifolds. This book is illustrated with many pictures, as the author intended to share his own enthusiasm for the beauty of some of the mathematical objects involved. However, it also emphasizes mathematical rigor and, with the exception of the most recent research breakthroughs, its constructions and statements are carefully justified.
Book Synopsis Algebraic Geometry by : Robin Hartshorne
Download or read book Algebraic Geometry written by Robin Hartshorne and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.
Book Synopsis From Groups to Geometry and Back by : Vaughn Climenhaga
Download or read book From Groups to Geometry and Back written by Vaughn Climenhaga and published by American Mathematical Soc.. This book was released on 2017-04-07 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Groups arise naturally as symmetries of geometric objects, and so groups can be used to understand geometry and topology. Conversely, one can study abstract groups by using geometric techniques and ultimately by treating groups themselves as geometric objects. This book explores these connections between group theory and geometry, introducing some of the main ideas of transformation groups, algebraic topology, and geometric group theory. The first half of the book introduces basic notions of group theory and studies symmetry groups in various geometries, including Euclidean, projective, and hyperbolic. The classification of Euclidean isometries leads to results on regular polyhedra and polytopes; the study of symmetry groups using matrices leads to Lie groups and Lie algebras. The second half of the book explores ideas from algebraic topology and geometric group theory. The fundamental group appears as yet another group associated to a geometric object and turns out to be a symmetry group using covering spaces and deck transformations. In the other direction, Cayley graphs, planar models, and fundamental domains appear as geometric objects associated to groups. The final chapter discusses groups themselves as geometric objects, including a gentle introduction to Gromov's theorem on polynomial growth and Grigorchuk's example of intermediate growth. The book is accessible to undergraduate students (and anyone else) with a background in calculus, linear algebra, and basic real analysis, including topological notions of convergence and connectedness. This book is a result of the MASS course in algebra at Penn State University in the fall semester of 2009.
Download or read book Viewpoints written by Marc Frantz and published by Princeton University Press. This book was released on 2011-07-05 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: An undergraduate textbook devoted exclusively to relationships between mathematics and art, Viewpoints is ideally suited for math-for-liberal-arts courses and mathematics courses for fine arts majors. The textbook contains a wide variety of classroom-tested activities and problems, a series of essays by contemporary artists written especially for the book, and a plethora of pedagogical and learning opportunities for instructors and students. Viewpoints focuses on two mathematical areas: perspective related to drawing man-made forms and fractal geometry related to drawing natural forms. Investigating facets of the three-dimensional world in order to understand mathematical concepts behind the art, the textbook explores art topics including comic, anamorphic, and classical art, as well as photography, while presenting such mathematical ideas as proportion, ratio, self-similarity, exponents, and logarithms. Straightforward problems and rewarding solutions empower students to make accurate, sophisticated drawings. Personal essays and short biographies by contemporary artists are interspersed between chapters and are accompanied by images of their work. These fine artists--who include mathematicians and scientists--examine how mathematics influences their art. Accessible to students of all levels, Viewpoints encourages experimentation and collaboration, and captures the essence of artistic and mathematical creation and discovery. Classroom-tested activities and problem solving Accessible problems that move beyond regular art school curriculum Multiple solutions of varying difficulty and applicability Appropriate for students of all mathematics and art levels Original and exclusive essays by contemporary artists Forthcoming: Instructor's manual (available only to teachers)