Machine Learning with PyTorch and Scikit-Learn

Download Machine Learning with PyTorch and Scikit-Learn PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1801816387
Total Pages : 775 pages
Book Rating : 4.8/5 (18 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning with PyTorch and Scikit-Learn by : Sebastian Raschka

Download or read book Machine Learning with PyTorch and Scikit-Learn written by Sebastian Raschka and published by Packt Publishing Ltd. This book was released on 2022-02-25 with total page 775 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book of the bestselling and widely acclaimed Python Machine Learning series is a comprehensive guide to machine and deep learning using PyTorch s simple to code framework. Purchase of the print or Kindle book includes a free eBook in PDF format. Key Features Learn applied machine learning with a solid foundation in theory Clear, intuitive explanations take you deep into the theory and practice of Python machine learning Fully updated and expanded to cover PyTorch, transformers, XGBoost, graph neural networks, and best practices Book DescriptionMachine Learning with PyTorch and Scikit-Learn is a comprehensive guide to machine learning and deep learning with PyTorch. It acts as both a step-by-step tutorial and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, we teach the principles allowing you to build models and applications for yourself. Why PyTorch? PyTorch is the Pythonic way to learn machine learning, making it easier to learn and simpler to code with. This book explains the essential parts of PyTorch and how to create models using popular libraries, such as PyTorch Lightning and PyTorch Geometric. You will also learn about generative adversarial networks (GANs) for generating new data and training intelligent agents with reinforcement learning. Finally, this new edition is expanded to cover the latest trends in deep learning, including graph neural networks and large-scale transformers used for natural language processing (NLP). This PyTorch book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.What you will learn Explore frameworks, models, and techniques for machines to learn from data Use scikit-learn for machine learning and PyTorch for deep learning Train machine learning classifiers on images, text, and more Build and train neural networks, transformers, and boosting algorithms Discover best practices for evaluating and tuning models Predict continuous target outcomes using regression analysis Dig deeper into textual and social media data using sentiment analysis Who this book is for If you have a good grasp of Python basics and want to start learning about machine learning and deep learning, then this is the book for you. This is an essential resource written for developers and data scientists who want to create practical machine learning and deep learning applications using scikit-learn and PyTorch. Before you get started with this book, you’ll need a good understanding of calculus, as well as linear algebra.

Deep Learning with PyTorch

Download Deep Learning with PyTorch PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638354073
Total Pages : 518 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning with PyTorch by : Luca Pietro Giovanni Antiga

Download or read book Deep Learning with PyTorch written by Luca Pietro Giovanni Antiga and published by Simon and Schuster. This book was released on 2020-07-01 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: “We finally have the definitive treatise on PyTorch! It covers the basics and abstractions in great detail. I hope this book becomes your extended reference document.” —Soumith Chintala, co-creator of PyTorch Key Features Written by PyTorch’s creator and key contributors Develop deep learning models in a familiar Pythonic way Use PyTorch to build an image classifier for cancer detection Diagnose problems with your neural network and improve training with data augmentation Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About The Book Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands. Instantly familiar to anyone who knows Python data tools like NumPy and Scikit-learn, PyTorch simplifies deep learning without sacrificing advanced features. It’s great for building quick models, and it scales smoothly from laptop to enterprise. Deep Learning with PyTorch teaches you to create deep learning and neural network systems with PyTorch. This practical book gets you to work right away building a tumor image classifier from scratch. After covering the basics, you’ll learn best practices for the entire deep learning pipeline, tackling advanced projects as your PyTorch skills become more sophisticated. All code samples are easy to explore in downloadable Jupyter notebooks. What You Will Learn Understanding deep learning data structures such as tensors and neural networks Best practices for the PyTorch Tensor API, loading data in Python, and visualizing results Implementing modules and loss functions Utilizing pretrained models from PyTorch Hub Methods for training networks with limited inputs Sifting through unreliable results to diagnose and fix problems in your neural network Improve your results with augmented data, better model architecture, and fine tuning This Book Is Written For For Python programmers with an interest in machine learning. No experience with PyTorch or other deep learning frameworks is required. About The Authors Eli Stevens has worked in Silicon Valley for the past 15 years as a software engineer, and the past 7 years as Chief Technical Officer of a startup making medical device software. Luca Antiga is co-founder and CEO of an AI engineering company located in Bergamo, Italy, and a regular contributor to PyTorch. Thomas Viehmann is a Machine Learning and PyTorch speciality trainer and consultant based in Munich, Germany and a PyTorch core developer. Table of Contents PART 1 - CORE PYTORCH 1 Introducing deep learning and the PyTorch Library 2 Pretrained networks 3 It starts with a tensor 4 Real-world data representation using tensors 5 The mechanics of learning 6 Using a neural network to fit the data 7 Telling birds from airplanes: Learning from images 8 Using convolutions to generalize PART 2 - LEARNING FROM IMAGES IN THE REAL WORLD: EARLY DETECTION OF LUNG CANCER 9 Using PyTorch to fight cancer 10 Combining data sources into a unified dataset 11 Training a classification model to detect suspected tumors 12 Improving training with metrics and augmentation 13 Using segmentation to find suspected nodules 14 End-to-end nodule analysis, and where to go next PART 3 - DEPLOYMENT 15 Deploying to production

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow

Download Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 149203259X
Total Pages : 851 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow by : Aurélien Géron

Download or read book Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow written by Aurélien Géron and published by "O'Reilly Media, Inc.". This book was released on 2019-09-05 with total page 851 pages. Available in PDF, EPUB and Kindle. Book excerpt: Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets

Python Machine Learning By Example

Download Python Machine Learning By Example PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1800203861
Total Pages : 527 pages
Book Rating : 4.8/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Python Machine Learning By Example by : Yuxi (Hayden) Liu

Download or read book Python Machine Learning By Example written by Yuxi (Hayden) Liu and published by Packt Publishing Ltd. This book was released on 2020-10-30 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide to get you up to speed with the latest developments of practical machine learning with Python and upgrade your understanding of machine learning (ML) algorithms and techniques Key FeaturesDive into machine learning algorithms to solve the complex challenges faced by data scientists todayExplore cutting edge content reflecting deep learning and reinforcement learning developmentsUse updated Python libraries such as TensorFlow, PyTorch, and scikit-learn to track machine learning projects end-to-endBook Description Python Machine Learning By Example, Third Edition serves as a comprehensive gateway into the world of machine learning (ML). With six new chapters, on topics including movie recommendation engine development with Naïve Bayes, recognizing faces with support vector machine, predicting stock prices with artificial neural networks, categorizing images of clothing with convolutional neural networks, predicting with sequences using recurring neural networks, and leveraging reinforcement learning for making decisions, the book has been considerably updated for the latest enterprise requirements. At the same time, this book provides actionable insights on the key fundamentals of ML with Python programming. Hayden applies his expertise to demonstrate implementations of algorithms in Python, both from scratch and with libraries. Each chapter walks through an industry-adopted application. With the help of realistic examples, you will gain an understanding of the mechanics of ML techniques in areas such as exploratory data analysis, feature engineering, classification, regression, clustering, and NLP. By the end of this ML Python book, you will have gained a broad picture of the ML ecosystem and will be well-versed in the best practices of applying ML techniques to solve problems. What you will learnUnderstand the important concepts in ML and data scienceUse Python to explore the world of data mining and analyticsScale up model training using varied data complexities with Apache SparkDelve deep into text analysis and NLP using Python libraries such NLTK and GensimSelect and build an ML model and evaluate and optimize its performanceImplement ML algorithms from scratch in Python, TensorFlow 2, PyTorch, and scikit-learnWho this book is for If you’re a machine learning enthusiast, data analyst, or data engineer highly passionate about machine learning and want to begin working on machine learning assignments, this book is for you. Prior knowledge of Python coding is assumed and basic familiarity with statistical concepts will be beneficial, although this is not necessary.

Hands-On Machine Learning with Scikit-learn and Scientific Python Toolkits

Download Hands-On Machine Learning with Scikit-learn and Scientific Python Toolkits PDF Online Free

Author :
Publisher :
ISBN 13 : 9781838826048
Total Pages : 384 pages
Book Rating : 4.8/5 (26 download)

DOWNLOAD NOW!


Book Synopsis Hands-On Machine Learning with Scikit-learn and Scientific Python Toolkits by : Tarek Amr

Download or read book Hands-On Machine Learning with Scikit-learn and Scientific Python Toolkits written by Tarek Amr and published by . This book was released on 2020-07-24 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt:

AI and Machine Learning for Coders

Download AI and Machine Learning for Coders PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1492078166
Total Pages : 393 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis AI and Machine Learning for Coders by : Laurence Moroney

Download or read book AI and Machine Learning for Coders written by Laurence Moroney and published by O'Reilly Media. This book was released on 2020-10-01 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you're looking to make a career move from programmer to AI specialist, this is the ideal place to start. Based on Laurence Moroney's extremely successful AI courses, this introductory book provides a hands-on, code-first approach to help you build confidence while you learn key topics. You'll understand how to implement the most common scenarios in machine learning, such as computer vision, natural language processing (NLP), and sequence modeling for web, mobile, cloud, and embedded runtimes. Most books on machine learning begin with a daunting amount of advanced math. This guide is built on practical lessons that let you work directly with the code. You'll learn: How to build models with TensorFlow using skills that employers desire The basics of machine learning by working with code samples How to implement computer vision, including feature detection in images How to use NLP to tokenize and sequence words and sentences Methods for embedding models in Android and iOS How to serve models over the web and in the cloud with TensorFlow Serving

Python Machine Learning

Download Python Machine Learning PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1783555149
Total Pages : 455 pages
Book Rating : 4.7/5 (835 download)

DOWNLOAD NOW!


Book Synopsis Python Machine Learning by : Sebastian Raschka

Download or read book Python Machine Learning written by Sebastian Raschka and published by Packt Publishing Ltd. This book was released on 2015-09-23 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.

Python Machine Learning for Beginners

Download Python Machine Learning for Beginners PDF Online Free

Author :
Publisher :
ISBN 13 : 9781734790153
Total Pages : 302 pages
Book Rating : 4.7/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Python Machine Learning for Beginners by : Ai Publishing

Download or read book Python Machine Learning for Beginners written by Ai Publishing and published by . This book was released on 2020-10-23 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Python Machine Learning for BeginnersMachine Learning (ML) and Artificial Intelligence (AI) are here to stay. Yes, that's right. Based on a significant amount of data and evidence, it's obvious that ML and AI are here to stay.Consider any industry today. The practical applications of ML are really driving business results. Whether it's healthcare, e-commerce, government, transportation, social media sites, financial services, manufacturing, oil and gas, marketing and salesYou name it. The list goes on. There's no doubt that ML is going to play a decisive role in every domain in the future.But what does a Machine Learning professional do?A Machine Learning specialist develops intelligent algorithms that learn from data and also adapt to the data quickly. Then, these high-end algorithms make accurate predictions. Python Machine Learning for Beginners presents you with a hands-on approach to learn ML fast.How Is This Book Different?AI Publishing strongly believes in learning by doing methodology. With this in mind, we have crafted this book with care. You will find that the emphasis on the theoretical aspects of machine learning is equal to the emphasis on the practical aspects of the subject matter.You'll learn about data analysis and visualization in great detail in the first half of the book. Then, in the second half, you'll learn about machine learning and statistical models for data science.Each chapter presents you with the theoretical framework behind the different data science and machine learning techniques, and practical examples illustrate the working of these techniques.When you buy this book, your learning journey becomes so much easier. The reason is you get instant access to all the related learning material presented with this book--references, PDFs, Python codes, and exercises--on the publisher's website. All this material is available to you at no extra cost. You can download the ML datasets used in this book at runtime, or you can access them via the Resources/Datasets folder.You'll also find the short course on Python programming in the second chapter immensely useful, especially if you are new to Python. Since this book gives you access to all the Python codes and datasets, you only need access to a computer with the internet to get started. The topics covered include: Introduction and Environment Setup Python Crash Course Python NumPy Library for Data Analysis Introduction to Pandas Library for Data Analysis Data Visualization via Matplotlib, Seaborn, and Pandas Libraries Solving Regression Problems in ML Using Sklearn Library Solving Classification Problems in ML Using Sklearn Library Data Clustering with ML Using Sklearn Library Deep Learning with Python TensorFlow 2.0 Dimensionality Reduction with PCA and LDA Using Sklearn Click the BUY NOW button to start your Machine Learning journey.

PyTorch 1.x Reinforcement Learning Cookbook

Download PyTorch 1.x Reinforcement Learning Cookbook PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1838553231
Total Pages : 334 pages
Book Rating : 4.8/5 (385 download)

DOWNLOAD NOW!


Book Synopsis PyTorch 1.x Reinforcement Learning Cookbook by : Yuxi (Hayden) Liu

Download or read book PyTorch 1.x Reinforcement Learning Cookbook written by Yuxi (Hayden) Liu and published by Packt Publishing Ltd. This book was released on 2019-10-31 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Implement reinforcement learning techniques and algorithms with the help of real-world examples and recipes Key FeaturesUse PyTorch 1.x to design and build self-learning artificial intelligence (AI) modelsImplement RL algorithms to solve control and optimization challenges faced by data scientists todayApply modern RL libraries to simulate a controlled environment for your projectsBook Description Reinforcement learning (RL) is a branch of machine learning that has gained popularity in recent times. It allows you to train AI models that learn from their own actions and optimize their behavior. PyTorch has also emerged as the preferred tool for training RL models because of its efficiency and ease of use. With this book, you'll explore the important RL concepts and the implementation of algorithms in PyTorch 1.x. The recipes in the book, along with real-world examples, will help you master various RL techniques, such as dynamic programming, Monte Carlo simulations, temporal difference, and Q-learning. You'll also gain insights into industry-specific applications of these techniques. Later chapters will guide you through solving problems such as the multi-armed bandit problem and the cartpole problem using the multi-armed bandit algorithm and function approximation. You'll also learn how to use Deep Q-Networks to complete Atari games, along with how to effectively implement policy gradients. Finally, you'll discover how RL techniques are applied to Blackjack, Gridworld environments, internet advertising, and the Flappy Bird game. By the end of this book, you'll have developed the skills you need to implement popular RL algorithms and use RL techniques to solve real-world problems. What you will learnUse Q-learning and the state–action–reward–state–action (SARSA) algorithm to solve various Gridworld problemsDevelop a multi-armed bandit algorithm to optimize display advertisingScale up learning and control processes using Deep Q-NetworksSimulate Markov Decision Processes, OpenAI Gym environments, and other common control problemsSelect and build RL models, evaluate their performance, and optimize and deploy themUse policy gradient methods to solve continuous RL problemsWho this book is for Machine learning engineers, data scientists and AI researchers looking for quick solutions to different reinforcement learning problems will find this book useful. Although prior knowledge of machine learning concepts is required, experience with PyTorch will be useful but not necessary.

Grokking Deep Learning

Download Grokking Deep Learning PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 163835720X
Total Pages : 475 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Grokking Deep Learning by : Andrew W. Trask

Download or read book Grokking Deep Learning written by Andrew W. Trask and published by Simon and Schuster. This book was released on 2019-01-23 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Deep learning, a branch of artificial intelligence, teaches computers to learn by using neural networks, technology inspired by the human brain. Online text translation, self-driving cars, personalized product recommendations, and virtual voice assistants are just a few of the exciting modern advancements possible thanks to deep learning. About the Book Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Using only Python and its math-supporting library, NumPy, you'll train your own neural networks to see and understand images, translate text into different languages, and even write like Shakespeare! When you're done, you'll be fully prepared to move on to mastering deep learning frameworks. What's inside The science behind deep learning Building and training your own neural networks Privacy concepts, including federated learning Tips for continuing your pursuit of deep learning About the Reader For readers with high school-level math and intermediate programming skills. About the Author Andrew Trask is a PhD student at Oxford University and a research scientist at DeepMind. Previously, Andrew was a researcher and analytics product manager at Digital Reasoning, where he trained the world's largest artificial neural network and helped guide the analytics roadmap for the Synthesys cognitive computing platform. Table of Contents Introducing deep learning: why you should learn it Fundamental concepts: how do machines learn? Introduction to neural prediction: forward propagation Introduction to neural learning: gradient descent Learning multiple weights at a time: generalizing gradient descent Building your first deep neural network: introduction to backpropagation How to picture neural networks: in your head and on paper Learning signal and ignoring noise:introduction to regularization and batching Modeling probabilities and nonlinearities: activation functions Neural learning about edges and corners: intro to convolutional neural networks Neural networks that understand language: king - man + woman == ? Neural networks that write like Shakespeare: recurrent layers for variable-length data Introducing automatic optimization: let's build a deep learning framework Learning to write like Shakespeare: long short-term memory Deep learning on unseen data: introducing federated learning Where to go from here: a brief guide

Deep Learning for Coders with fastai and PyTorch

Download Deep Learning for Coders with fastai and PyTorch PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1492045497
Total Pages : 624 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning for Coders with fastai and PyTorch by : Jeremy Howard

Download or read book Deep Learning for Coders with fastai and PyTorch written by Jeremy Howard and published by O'Reilly Media. This book was released on 2020-06-29 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala

Modern Computer Vision with PyTorch

Download Modern Computer Vision with PyTorch PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1839216530
Total Pages : 805 pages
Book Rating : 4.8/5 (392 download)

DOWNLOAD NOW!


Book Synopsis Modern Computer Vision with PyTorch by : V Kishore Ayyadevara

Download or read book Modern Computer Vision with PyTorch written by V Kishore Ayyadevara and published by Packt Publishing Ltd. This book was released on 2020-11-27 with total page 805 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get to grips with deep learning techniques for building image processing applications using PyTorch with the help of code notebooks and test questions Key FeaturesImplement solutions to 50 real-world computer vision applications using PyTorchUnderstand the theory and working mechanisms of neural network architectures and their implementationDiscover best practices using a custom library created especially for this bookBook Description Deep learning is the driving force behind many recent advances in various computer vision (CV) applications. This book takes a hands-on approach to help you to solve over 50 CV problems using PyTorch1.x on real-world datasets. You’ll start by building a neural network (NN) from scratch using NumPy and PyTorch and discover best practices for tweaking its hyperparameters. You’ll then perform image classification using convolutional neural networks and transfer learning and understand how they work. As you progress, you’ll implement multiple use cases of 2D and 3D multi-object detection, segmentation, human-pose-estimation by learning about the R-CNN family, SSD, YOLO, U-Net architectures, and the Detectron2 platform. The book will also guide you in performing facial expression swapping, generating new faces, and manipulating facial expressions as you explore autoencoders and modern generative adversarial networks. You’ll learn how to combine CV with NLP techniques, such as LSTM and transformer, and RL techniques, such as Deep Q-learning, to implement OCR, image captioning, object detection, and a self-driving car agent. Finally, you'll move your NN model to production on the AWS Cloud. By the end of this book, you’ll be able to leverage modern NN architectures to solve over 50 real-world CV problems confidently. What you will learnTrain a NN from scratch with NumPy and PyTorchImplement 2D and 3D multi-object detection and segmentationGenerate digits and DeepFakes with autoencoders and advanced GANsManipulate images using CycleGAN, Pix2PixGAN, StyleGAN2, and SRGANCombine CV with NLP to perform OCR, image captioning, and object detectionCombine CV with reinforcement learning to build agents that play pong and self-drive a carDeploy a deep learning model on the AWS server using FastAPI and DockerImplement over 35 NN architectures and common OpenCV utilitiesWho this book is for This book is for beginners to PyTorch and intermediate-level machine learning practitioners who are looking to get well-versed with computer vision techniques using deep learning and PyTorch. If you are just getting started with neural networks, you’ll find the use cases accompanied by notebooks in GitHub present in this book useful. Basic knowledge of the Python programming language and machine learning is all you need to get started with this book.

Deep Learning with PyTorch Lightning

Download Deep Learning with PyTorch Lightning PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1800569270
Total Pages : 366 pages
Book Rating : 4.8/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning with PyTorch Lightning by : Kunal Sawarkar

Download or read book Deep Learning with PyTorch Lightning written by Kunal Sawarkar and published by Packt Publishing Ltd. This book was released on 2022-04-29 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build, train, deploy, and scale deep learning models quickly and accurately, improving your productivity using the lightweight PyTorch Wrapper Key FeaturesBecome well-versed with PyTorch Lightning architecture and learn how it can be implemented in various industry domainsSpeed up your research using PyTorch Lightning by creating new loss functions, networks, and architecturesTrain and build new algorithms for massive data using distributed trainingBook Description PyTorch Lightning lets researchers build their own Deep Learning (DL) models without having to worry about the boilerplate. With the help of this book, you'll be able to maximize productivity for DL projects while ensuring full flexibility from model formulation through to implementation. You'll take a hands-on approach to implementing PyTorch Lightning models to get up to speed in no time. You'll start by learning how to configure PyTorch Lightning on a cloud platform, understand the architectural components, and explore how they are configured to build various industry solutions. Next, you'll build a network and application from scratch and see how you can expand it based on your specific needs, beyond what the framework can provide. The book also demonstrates how to implement out-of-box capabilities to build and train Self-Supervised Learning, semi-supervised learning, and time series models using PyTorch Lightning. As you advance, you'll discover how generative adversarial networks (GANs) work. Finally, you'll work with deployment-ready applications, focusing on faster performance and scaling, model scoring on massive volumes of data, and model debugging. By the end of this PyTorch book, you'll have developed the knowledge and skills necessary to build and deploy your own scalable DL applications using PyTorch Lightning. What you will learnCustomize models that are built for different datasets, model architectures, and optimizersUnderstand how a variety of Deep Learning models from image recognition and time series to GANs, semi-supervised and self-supervised models can be builtUse out-of-the-box model architectures and pre-trained models using transfer learningRun and tune DL models in a multi-GPU environment using mixed-mode precisionsExplore techniques for model scoring on massive workloadsDiscover troubleshooting techniques while debugging DL modelsWho this book is for This deep learning book is for citizen data scientists and expert data scientists transitioning from other frameworks to PyTorch Lightning. This book will also be useful for deep learning researchers who are just getting started with coding for deep learning models using PyTorch Lightning. Working knowledge of Python programming and an intermediate-level understanding of statistics and deep learning fundamentals is expected.

Mastering Machine Learning with scikit-learn

Download Mastering Machine Learning with scikit-learn PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1788298497
Total Pages : 249 pages
Book Rating : 4.7/5 (882 download)

DOWNLOAD NOW!


Book Synopsis Mastering Machine Learning with scikit-learn by : Gavin Hackeling

Download or read book Mastering Machine Learning with scikit-learn written by Gavin Hackeling and published by Packt Publishing Ltd. This book was released on 2017-07-24 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Use scikit-learn to apply machine learning to real-world problems About This Book Master popular machine learning models including k-nearest neighbors, random forests, logistic regression, k-means, naive Bayes, and artificial neural networks Learn how to build and evaluate performance of efficient models using scikit-learn Practical guide to master your basics and learn from real life applications of machine learning Who This Book Is For This book is intended for software engineers who want to understand how common machine learning algorithms work and develop an intuition for how to use them, and for data scientists who want to learn about the scikit-learn API. Familiarity with machine learning fundamentals and Python are helpful, but not required. What You Will Learn Review fundamental concepts such as bias and variance Extract features from categorical variables, text, and images Predict the values of continuous variables using linear regression and K Nearest Neighbors Classify documents and images using logistic regression and support vector machines Create ensembles of estimators using bagging and boosting techniques Discover hidden structures in data using K-Means clustering Evaluate the performance of machine learning systems in common tasks In Detail Machine learning is the buzzword bringing computer science and statistics together to build smart and efficient models. Using powerful algorithms and techniques offered by machine learning you can automate any analytical model. This book examines a variety of machine learning models including popular machine learning algorithms such as k-nearest neighbors, logistic regression, naive Bayes, k-means, decision trees, and artificial neural networks. It discusses data preprocessing, hyperparameter optimization, and ensemble methods. You will build systems that classify documents, recognize images, detect ads, and more. You will learn to use scikit-learn's API to extract features from categorical variables, text and images; evaluate model performance, and develop an intuition for how to improve your model's performance. By the end of this book, you will master all required concepts of scikit-learn to build efficient models at work to carry out advanced tasks with the practical approach. Style and approach This book is motivated by the belief that you do not understand something until you can describe it simply. Work through toy problems to develop your understanding of the learning algorithms and models, then apply your learnings to real-life problems.

Mastering Predictive Analytics with scikit-learn and TensorFlow

Download Mastering Predictive Analytics with scikit-learn and TensorFlow PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1789612241
Total Pages : 149 pages
Book Rating : 4.7/5 (896 download)

DOWNLOAD NOW!


Book Synopsis Mastering Predictive Analytics with scikit-learn and TensorFlow by : Alvaro Fuentes

Download or read book Mastering Predictive Analytics with scikit-learn and TensorFlow written by Alvaro Fuentes and published by Packt Publishing Ltd. This book was released on 2018-09-29 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn advanced techniques to improve the performance and quality of your predictive models Key FeaturesUse ensemble methods to improve the performance of predictive analytics modelsImplement feature selection, dimensionality reduction, and cross-validation techniquesDevelop neural network models and master the basics of deep learningBook Description Python is a programming language that provides a wide range of features that can be used in the field of data science. Mastering Predictive Analytics with scikit-learn and TensorFlow covers various implementations of ensemble methods, how they are used with real-world datasets, and how they improve prediction accuracy in classification and regression problems. This book starts with ensemble methods and their features. You will see that scikit-learn provides tools for choosing hyperparameters for models. As you make your way through the book, you will cover the nitty-gritty of predictive analytics and explore its features and characteristics. You will also be introduced to artificial neural networks and TensorFlow, and how it is used to create neural networks. In the final chapter, you will explore factors such as computational power, along with improvement methods and software enhancements for efficient predictive analytics. By the end of this book, you will be well-versed in using deep neural networks to solve common problems in big data analysis. What you will learnUse ensemble algorithms to obtain accurate predictionsApply dimensionality reduction techniques to combine features and build better modelsChoose the optimal hyperparameters using cross-validationImplement different techniques to solve current challenges in the predictive analytics domainUnderstand various elements of deep neural network (DNN) modelsImplement neural networks to solve both classification and regression problemsWho this book is for Mastering Predictive Analytics with scikit-learn and TensorFlow is for data analysts, software engineers, and machine learning developers who are interested in implementing advanced predictive analytics using Python. Business intelligence experts will also find this book indispensable as it will teach them how to progress from basic predictive models to building advanced models and producing more accurate predictions. Prior knowledge of Python and familiarity with predictive analytics concepts are assumed.

Deep Learning with PyTorch

Download Deep Learning with PyTorch PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1788626079
Total Pages : 255 pages
Book Rating : 4.7/5 (886 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning with PyTorch by : Vishnu Subramanian

Download or read book Deep Learning with PyTorch written by Vishnu Subramanian and published by Packt Publishing Ltd. This book was released on 2018-02-23 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build neural network models in text, vision and advanced analytics using PyTorch Key Features Learn PyTorch for implementing cutting-edge deep learning algorithms. Train your neural networks for higher speed and flexibility and learn how to implement them in various scenarios; Cover various advanced neural network architecture such as ResNet, Inception, DenseNet and more with practical examples; Book Description Deep learning powers the most intelligent systems in the world, such as Google Voice, Siri, and Alexa. Advancements in powerful hardware, such as GPUs, software frameworks such as PyTorch, Keras, Tensorflow, and CNTK along with the availability of big data have made it easier to implement solutions to problems in the areas of text, vision, and advanced analytics. This book will get you up and running with one of the most cutting-edge deep learning libraries—PyTorch. PyTorch is grabbing the attention of deep learning researchers and data science professionals due to its accessibility, efficiency and being more native to Python way of development. You'll start off by installing PyTorch, then quickly move on to learn various fundamental blocks that power modern deep learning. You will also learn how to use CNN, RNN, LSTM and other networks to solve real-world problems. This book explains the concepts of various state-of-the-art deep learning architectures, such as ResNet, DenseNet, Inception, and Seq2Seq, without diving deep into the math behind them. You will also learn about GPU computing during the course of the book. You will see how to train a model with PyTorch and dive into complex neural networks such as generative networks for producing text and images. By the end of the book, you'll be able to implement deep learning applications in PyTorch with ease. What you will learn Use PyTorch for GPU-accelerated tensor computations Build custom datasets and data loaders for images and test the models using torchvision and torchtext Build an image classifier by implementing CNN architectures using PyTorch Build systems that do text classification and language modeling using RNN, LSTM, and GRU Learn advanced CNN architectures such as ResNet, Inception, Densenet, and learn how to use them for transfer learning Learn how to mix multiple models for a powerful ensemble model Generate new images using GAN’s and generate artistic images using style transfer Who this book is for This book is for machine learning engineers, data analysts, data scientists interested in deep learning and are looking to explore implementing advanced algorithms in PyTorch. Some knowledge of machine learning is helpful but not a mandatory need. Working knowledge of Python programming is expected.

Machine Learning Pocket Reference

Download Machine Learning Pocket Reference PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 149204749X
Total Pages : 230 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Pocket Reference by : Matt Harrison

Download or read book Machine Learning Pocket Reference written by Matt Harrison and published by "O'Reilly Media, Inc.". This book was released on 2019-08-27 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: With detailed notes, tables, and examples, this handy reference will help you navigate the basics of structured machine learning. Author Matt Harrison delivers a valuable guide that you can use for additional support during training and as a convenient resource when you dive into your next machine learning project. Ideal for programmers, data scientists, and AI engineers, this book includes an overview of the machine learning process and walks you through classification with structured data. You’ll also learn methods for clustering, predicting a continuous value (regression), and reducing dimensionality, among other topics. This pocket reference includes sections that cover: Classification, using the Titanic dataset Cleaning data and dealing with missing data Exploratory data analysis Common preprocessing steps using sample data Selecting features useful to the model Model selection Metrics and classification evaluation Regression examples using k-nearest neighbor, decision trees, boosting, and more Metrics for regression evaluation Clustering Dimensionality reduction Scikit-learn pipelines