Advances in Machine Learning Applications in Software Engineering

Download Advances in Machine Learning Applications in Software Engineering PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1591409438
Total Pages : 498 pages
Book Rating : 4.5/5 (914 download)

DOWNLOAD NOW!


Book Synopsis Advances in Machine Learning Applications in Software Engineering by : Zhang, Du

Download or read book Advances in Machine Learning Applications in Software Engineering written by Zhang, Du and published by IGI Global. This book was released on 2006-10-31 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book provides analysis, characterization and refinement of software engineering data in terms of machine learning methods. It depicts applications of several machine learning approaches in software systems development and deployment, and the use of machine learning methods to establish predictive models for software quality while offering readers suggestions by proposing future work in this emerging research field"--Provided by publisher.

Machine Learning Methods for Engineering Application Development

Download Machine Learning Methods for Engineering Application Development PDF Online Free

Author :
Publisher : Bentham Science Publishers
ISBN 13 : 9815079190
Total Pages : 240 pages
Book Rating : 4.8/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Methods for Engineering Application Development by : Prasad Lokulwar

Download or read book Machine Learning Methods for Engineering Application Development written by Prasad Lokulwar and published by Bentham Science Publishers. This book was released on 2022-11-11 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a quick review of machine learning methods for engineeringapplications. It provides an introduction to the principles of machine learningand common algorithms in the first section. Proceeding chapters summarize andanalyze the existing scholarly work and discuss some general issues in this field.Next, it offers some guidelines on applying machine learning methods to softwareengineering tasks. Finally, it gives an outlook into some of the futuredevelopments and possibly new research areas of machine learning and artificialintelligence in general.Techniques highlighted in the book include: Bayesian models, supportvector machines, decision tree induction, regression analysis, and recurrent andconvolutional neural network. Finally, it also intends to be a reference book. Key Features:Describes real-world problems that can be solved using machine learningExplains methods for directly applying machine learning techniques to concrete real-world problemsExplains concepts used in Industry 4.0 platforms, including the use and integration of AI, ML, Big Data, NLP, and the Internet of Things (IoT). It does not require prior knowledge of the machine learning This book is meantto be an introduction to artificial intelligence (AI), machine earning, and itsapplications in Industry 4.0. It explains the basic mathematical principlesbut is intended to be understandable for readers who do not have a backgroundin advanced mathematics.

Machine Learning Applications In Software Engineering

Download Machine Learning Applications In Software Engineering PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814481424
Total Pages : 367 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Applications In Software Engineering by : Du Zhang

Download or read book Machine Learning Applications In Software Engineering written by Du Zhang and published by World Scientific. This book was released on 2005-02-21 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning deals with the issue of how to build computer programs that improve their performance at some tasks through experience. Machine learning algorithms have proven to be of great practical value in a variety of application domains. Not surprisingly, the field of software engineering turns out to be a fertile ground where many software development and maintenance tasks could be formulated as learning problems and approached in terms of learning algorithms. This book deals with the subject of machine learning applications in software engineering. It provides an overview of machine learning, summarizes the state-of-the-practice in this niche area, gives a classification of the existing work, and offers some application guidelines. Also included in the book is a collection of previously published papers in this research area.

Applications of Machine Learning

Download Applications of Machine Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811533571
Total Pages : 404 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Applications of Machine Learning by : Prashant Johri

Download or read book Applications of Machine Learning written by Prashant Johri and published by Springer Nature. This book was released on 2020-05-04 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers applications of machine learning in artificial intelligence. The specific topics covered include human language, heterogeneous and streaming data, unmanned systems, neural information processing, marketing and the social sciences, bioinformatics and robotics, etc. It also provides a broad range of techniques that can be successfully applied and adopted in different areas. Accordingly, the book offers an interesting and insightful read for scholars in the areas of computer vision, speech recognition, healthcare, business, marketing, and bioinformatics.

Artificial Intelligence Methods For Software Engineering

Download Artificial Intelligence Methods For Software Engineering PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9811239932
Total Pages : 457 pages
Book Rating : 4.8/5 (112 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence Methods For Software Engineering by : Meir Kalech

Download or read book Artificial Intelligence Methods For Software Engineering written by Meir Kalech and published by World Scientific. This book was released on 2021-06-15 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: Software is an integral part of our lives today. Modern software systems are highly complex and often pose new challenges in different aspects of Software Engineering (SE).Artificial Intelligence (AI) is a growing field in computer science that has been proven effective in applying and developing AI techniques to address various SE challenges.This unique compendium covers applications of state-of-the-art AI techniques to the key areas of SE (design, development, debugging, testing, etc).All the materials presented are up-to-date. This reference text will benefit researchers, academics, professionals, and postgraduate students in AI, machine learning and software engineering.Related Link(s)

Artificial Intelligence and Machine Learning Applications in Civil, Mechanical, and Industrial Engineering

Download Artificial Intelligence and Machine Learning Applications in Civil, Mechanical, and Industrial Engineering PDF Online Free

Author :
Publisher : Engineering Science Reference
ISBN 13 : 9781799803027
Total Pages : 312 pages
Book Rating : 4.8/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence and Machine Learning Applications in Civil, Mechanical, and Industrial Engineering by : Gebrail Bekdas

Download or read book Artificial Intelligence and Machine Learning Applications in Civil, Mechanical, and Industrial Engineering written by Gebrail Bekdas and published by Engineering Science Reference. This book was released on 2019 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book examines the application of artificial intelligence and machine learning civil, mechanical, and industrial engineering"--

Applications of Artificial Intelligence in Process Systems Engineering

Download Applications of Artificial Intelligence in Process Systems Engineering PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 012821743X
Total Pages : 542 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis Applications of Artificial Intelligence in Process Systems Engineering by : Jingzheng Ren

Download or read book Applications of Artificial Intelligence in Process Systems Engineering written by Jingzheng Ren and published by Elsevier. This book was released on 2021-06-05 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applications of Artificial Intelligence in Process Systems Engineering offers a broad perspective on the issues related to artificial intelligence technologies and their applications in chemical and process engineering. The book comprehensively introduces the methodology and applications of AI technologies in process systems engineering, making it an indispensable reference for researchers and students. As chemical processes and systems are usually non-linear and complex, thus making it challenging to apply AI methods and technologies, this book is an ideal resource on emerging areas such as cloud computing, big data, the industrial Internet of Things and deep learning. With process systems engineering's potential to become one of the driving forces for the development of AI technologies, this book covers all the right bases. - Explains the concept of machine learning, deep learning and state-of-the-art intelligent algorithms - Discusses AI-based applications in process modeling and simulation, process integration and optimization, process control, and fault detection and diagnosis - Gives direction to future development trends of AI technologies in chemical and process engineering

Machine Learning: Concepts, Methodologies, Tools and Applications

Download Machine Learning: Concepts, Methodologies, Tools and Applications PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1609608194
Total Pages : 2174 pages
Book Rating : 4.6/5 (96 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning: Concepts, Methodologies, Tools and Applications by : Management Association, Information Resources

Download or read book Machine Learning: Concepts, Methodologies, Tools and Applications written by Management Association, Information Resources and published by IGI Global. This book was released on 2011-07-31 with total page 2174 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This reference offers a wide-ranging selection of key research in a complex field of study,discussing topics ranging from using machine learning to improve the effectiveness of agents and multi-agent systems to developing machine learning software for high frequency trading in financial markets"--Provided by publishe

Machine Learning Engineering in Action

Download Machine Learning Engineering in Action PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638356580
Total Pages : 879 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Engineering in Action by : Ben Wilson

Download or read book Machine Learning Engineering in Action written by Ben Wilson and published by Simon and Schuster. This book was released on 2022-05-17 with total page 879 pages. Available in PDF, EPUB and Kindle. Book excerpt: Field-tested tips, tricks, and design patterns for building machine learning projects that are deployable, maintainable, and secure from concept to production. In Machine Learning Engineering in Action, you will learn: Evaluating data science problems to find the most effective solution Scoping a machine learning project for usage expectations and budget Process techniques that minimize wasted effort and speed up production Assessing a project using standardized prototyping work and statistical validation Choosing the right technologies and tools for your project Making your codebase more understandable, maintainable, and testable Automating your troubleshooting and logging practices Ferrying a machine learning project from your data science team to your end users is no easy task. Machine Learning Engineering in Action will help you make it simple. Inside, you'll find fantastic advice from veteran industry expert Ben Wilson, Principal Resident Solutions Architect at Databricks. Ben introduces his personal toolbox of techniques for building deployable and maintainable production machine learning systems. You'll learn the importance of Agile methodologies for fast prototyping and conferring with stakeholders, while developing a new appreciation for the importance of planning. Adopting well-established software development standards will help you deliver better code management, and make it easier to test, scale, and even reuse your machine learning code. Every method is explained in a friendly, peer-to-peer style and illustrated with production-ready source code. About the technology Deliver maximum performance from your models and data. This collection of reproducible techniques will help you build stable data pipelines, efficient application workflows, and maintainable models every time. Based on decades of good software engineering practice, machine learning engineering ensures your ML systems are resilient, adaptable, and perform in production. About the book Machine Learning Engineering in Action teaches you core principles and practices for designing, building, and delivering successful machine learning projects. You'll discover software engineering techniques like conducting experiments on your prototypes and implementing modular design that result in resilient architectures and consistent cross-team communication. Based on the author's extensive experience, every method in this book has been used to solve real-world projects. What's inside Scoping a machine learning project for usage expectations and budget Choosing the right technologies for your design Making your codebase more understandable, maintainable, and testable Automating your troubleshooting and logging practices About the reader For data scientists who know machine learning and the basics of object-oriented programming. About the author Ben Wilson is Principal Resident Solutions Architect at Databricks, where he developed the Databricks Labs AutoML project, and is an MLflow committer.

Deep Learning and the Game of Go

Download Deep Learning and the Game of Go PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638354014
Total Pages : 611 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning and the Game of Go by : Kevin Ferguson

Download or read book Deep Learning and the Game of Go written by Kevin Ferguson and published by Simon and Schuster. This book was released on 2019-01-06 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Deep Learning and the Game of Go teaches you how to apply the power of deep learning to complex reasoning tasks by building a Go-playing AI. After exposing you to the foundations of machine and deep learning, you'll use Python to build a bot and then teach it the rules of the game. Foreword by Thore Graepel, DeepMind Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology The ancient strategy game of Go is an incredible case study for AI. In 2016, a deep learning-based system shocked the Go world by defeating a world champion. Shortly after that, the upgraded AlphaGo Zero crushed the original bot by using deep reinforcement learning to master the game. Now, you can learn those same deep learning techniques by building your own Go bot! About the Book Deep Learning and the Game of Go introduces deep learning by teaching you to build a Go-winning bot. As you progress, you'll apply increasingly complex training techniques and strategies using the Python deep learning library Keras. You'll enjoy watching your bot master the game of Go, and along the way, you'll discover how to apply your new deep learning skills to a wide range of other scenarios! What's inside Build and teach a self-improving game AI Enhance classical game AI systems with deep learning Implement neural networks for deep learning About the Reader All you need are basic Python skills and high school-level math. No deep learning experience required. About the Author Max Pumperla and Kevin Ferguson are experienced deep learning specialists skilled in distributed systems and data science. Together, Max and Kevin built the open source bot BetaGo. Table of Contents PART 1 - FOUNDATIONS Toward deep learning: a machine-learning introduction Go as a machine-learning problem Implementing your first Go bot PART 2 - MACHINE LEARNING AND GAME AI Playing games with tree search Getting started with neural networks Designing a neural network for Go data Learning from data: a deep-learning bot Deploying bots in the wild Learning by practice: reinforcement learning Reinforcement learning with policy gradients Reinforcement learning with value methods Reinforcement learning with actor-critic methods PART 3 - GREATER THAN THE SUM OF ITS PARTS AlphaGo: Bringing it all together AlphaGo Zero: Integrating tree search with reinforcement learning

Deep Learning for Coders with fastai and PyTorch

Download Deep Learning for Coders with fastai and PyTorch PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1492045497
Total Pages : 624 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning for Coders with fastai and PyTorch by : Jeremy Howard

Download or read book Deep Learning for Coders with fastai and PyTorch written by Jeremy Howard and published by O'Reilly Media. This book was released on 2020-06-29 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala

Handbook of Deep Learning in Biomedical Engineering

Download Handbook of Deep Learning in Biomedical Engineering PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128230479
Total Pages : 322 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Deep Learning in Biomedical Engineering by : Valentina Emilia Balas

Download or read book Handbook of Deep Learning in Biomedical Engineering written by Valentina Emilia Balas and published by Academic Press. This book was released on 2020-11-12 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep Learning (DL) is a method of machine learning, running over Artificial Neural Networks, that uses multiple layers to extract high-level features from large amounts of raw data. Deep Learning methods apply levels of learning to transform input data into more abstract and composite information. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications gives readers a complete overview of the essential concepts of Deep Learning and its applications in the field of Biomedical Engineering. Deep learning has been rapidly developed in recent years, in terms of both methodological constructs and practical applications. Deep Learning provides computational models of multiple processing layers to learn and represent data with higher levels of abstraction. It is able to implicitly capture intricate structures of large-scale data and is ideally suited to many of the hardware architectures that are currently available. The ever-expanding amount of data that can be gathered through biomedical and clinical information sensing devices necessitates the development of machine learning and AI techniques such as Deep Learning and Convolutional Neural Networks to process and evaluate the data. Some examples of biomedical and clinical sensing devices that use Deep Learning include: Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound, Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), Magnetic Particle Imaging, EE/MEG, Optical Microscopy and Tomography, Photoacoustic Tomography, Electron Tomography, and Atomic Force Microscopy. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications provides the most complete coverage of Deep Learning applications in biomedical engineering available, including detailed real-world applications in areas such as computational neuroscience, neuroimaging, data fusion, medical image processing, neurological disorder diagnosis for diseases such as Alzheimer's, ADHD, and ASD, tumor prediction, as well as translational multimodal imaging analysis. - Presents a comprehensive handbook of the biomedical engineering applications of DL, including computational neuroscience, neuroimaging, time series data such as MRI, functional MRI, CT, EEG, MEG, and data fusion of biomedical imaging data from disparate sources, such as X-Ray/CT - Helps readers understand key concepts in DL applications for biomedical engineering and health care, including manifold learning, classification, clustering, and regression in neuroimaging data analysis - Provides readers with key DL development techniques such as creation of algorithms and application of DL through artificial neural networks and convolutional neural networks - Includes coverage of key application areas of DL such as early diagnosis of specific diseases such as Alzheimer's, ADHD, and ASD, and tumor prediction through MRI and translational multimodality imaging and biomedical applications such as detection, diagnostic analysis, quantitative measurements, and image guidance of ultrasonography

Machine Learning and Big Data

Download Machine Learning and Big Data PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119654742
Total Pages : 544 pages
Book Rating : 4.1/5 (196 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Big Data by : Uma N. Dulhare

Download or read book Machine Learning and Big Data written by Uma N. Dulhare and published by John Wiley & Sons. This book was released on 2020-09-01 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for academic and industrial developers, exploring and developing applications in the area of big data and machine learning, including those that are solving technology requirements, evaluation of methodology advances and algorithm demonstrations. The intent of this book is to provide awareness of algorithms used for machine learning and big data in the academic and professional community. The 17 chapters are divided into 5 sections: Theoretical Fundamentals; Big Data and Pattern Recognition; Machine Learning: Algorithms & Applications; Machine Learning's Next Frontier and Hands-On and Case Study. While it dwells on the foundations of machine learning and big data as a part of analytics, it also focuses on contemporary topics for research and development. In this regard, the book covers machine learning algorithms and their modern applications in developing automated systems. Subjects covered in detail include: Mathematical foundations of machine learning with various examples. An empirical study of supervised learning algorithms like Naïve Bayes, KNN and semi-supervised learning algorithms viz. S3VM, Graph-Based, Multiview. Precise study on unsupervised learning algorithms like GMM, K-mean clustering, Dritchlet process mixture model, X-means and Reinforcement learning algorithm with Q learning, R learning, TD learning, SARSA Learning, and so forth. Hands-on machine leaning open source tools viz. Apache Mahout, H2O. Case studies for readers to analyze the prescribed cases and present their solutions or interpretations with intrusion detection in MANETS using machine learning. Showcase on novel user-cases: Implications of Electronic Governance as well as Pragmatic Study of BD/ML technologies for agriculture, healthcare, social media, industry, banking, insurance and so on.

Application of Machine Learning and Deep Learning Methods to Power System Problems

Download Application of Machine Learning and Deep Learning Methods to Power System Problems PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030776964
Total Pages : 391 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Application of Machine Learning and Deep Learning Methods to Power System Problems by : Morteza Nazari-Heris

Download or read book Application of Machine Learning and Deep Learning Methods to Power System Problems written by Morteza Nazari-Heris and published by Springer Nature. This book was released on 2021-11-21 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book evaluates the role of innovative machine learning and deep learning methods in dealing with power system issues, concentrating on recent developments and advances that improve planning, operation, and control of power systems. Cutting-edge case studies from around the world consider prediction, classification, clustering, and fault/event detection in power systems, providing effective and promising solutions for many novel challenges faced by power system operators. Written by leading experts, the book will be an ideal resource for researchers and engineers working in the electrical power engineering and power system planning communities, as well as students in advanced graduate-level courses.

Machine Learning for Developers

Download Machine Learning for Developers PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1786466961
Total Pages : 264 pages
Book Rating : 4.7/5 (864 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Developers by : Rodolfo Bonnin

Download or read book Machine Learning for Developers written by Rodolfo Bonnin and published by Packt Publishing Ltd. This book was released on 2017-10-26 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Your one-stop guide to becoming a Machine Learning expert. About This Book Learn to develop efficient and intelligent applications by leveraging the power of Machine Learning A highly practical guide explaining the concepts of problem solving in the easiest possible manner Implement Machine Learning in the most practical way Who This Book Is For This book will appeal to any developer who wants to know what Machine Learning is and is keen to use Machine Learning to make their day-to-day apps fast, high performing, and accurate. Any developer who wants to enter the field of Machine Learning can effectively use this book as an entry point. What You Will Learn Learn the math and mechanics of Machine Learning via a developer-friendly approach Get to grips with widely used Machine Learning algorithms/techniques and how to use them to solve real problems Get a feel for advanced concepts, using popular programming frameworks. Prepare yourself and other developers for working in the new ubiquitous field of Machine Learning Get an overview of the most well known and powerful tools, to solve computing problems using Machine Learning. Get an intuitive and down-to-earth introduction to current Machine Learning areas, and apply these concepts on interesting and cutting-edge problems. In Detail Most of us have heard about the term Machine Learning, but surprisingly the question frequently asked by developers across the globe is, “How do I get started in Machine Learning?”. One reason could be attributed to the vastness of the subject area because people often get overwhelmed by the abstractness of ML and terms such as regression, supervised learning, probability density function, and so on. This book is a systematic guide teaching you how to implement various Machine Learning techniques and their day-to-day application and development. You will start with the very basics of data and mathematical models in easy-to-follow language that you are familiar with; you will feel at home while implementing the examples. The book will introduce you to various libraries and frameworks used in the world of Machine Learning, and then, without wasting any time, you will get to the point and implement Regression, Clustering, classification, Neural networks, and more with fun examples. As you get to grips with the techniques, you'll learn to implement those concepts to solve real-world scenarios for ML applications such as image analysis, Natural Language processing, and anomaly detections of time series data. By the end of the book, you will have learned various ML techniques to develop more efficient and intelligent applications. Style and approach This book gives you a glimpse of Machine Learning Models and the application of models at scale using clustering, classification, regression and reinforcement learning with fun examples. Hands-on examples will be presented to understand the power of problem solving with Machine Learning and Advanced architectures, software installation, and configuration.

Efficient Learning Machines

Download Efficient Learning Machines PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1430259906
Total Pages : 263 pages
Book Rating : 4.4/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Efficient Learning Machines by : Mariette Awad

Download or read book Efficient Learning Machines written by Mariette Awad and published by Apress. This book was released on 2015-04-27 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning techniques provide cost-effective alternatives to traditional methods for extracting underlying relationships between information and data and for predicting future events by processing existing information to train models. Efficient Learning Machines explores the major topics of machine learning, including knowledge discovery, classifications, genetic algorithms, neural networking, kernel methods, and biologically-inspired techniques. Mariette Awad and Rahul Khanna’s synthetic approach weaves together the theoretical exposition, design principles, and practical applications of efficient machine learning. Their experiential emphasis, expressed in their close analysis of sample algorithms throughout the book, aims to equip engineers, students of engineering, and system designers to design and create new and more efficient machine learning systems. Readers of Efficient Learning Machines will learn how to recognize and analyze the problems that machine learning technology can solve for them, how to implement and deploy standard solutions to sample problems, and how to design new systems and solutions. Advances in computing performance, storage, memory, unstructured information retrieval, and cloud computing have coevolved with a new generation of machine learning paradigms and big data analytics, which the authors present in the conceptual context of their traditional precursors. Awad and Khanna explore current developments in the deep learning techniques of deep neural networks, hierarchical temporal memory, and cortical algorithms. Nature suggests sophisticated learning techniques that deploy simple rules to generate highly intelligent and organized behaviors with adaptive, evolutionary, and distributed properties. The authors examine the most popular biologically-inspired algorithms, together with a sample application to distributed datacenter management. They also discuss machine learning techniques for addressing problems of multi-objective optimization in which solutions in real-world systems are constrained and evaluated based on how well they perform with respect to multiple objectives in aggregate. Two chapters on support vector machines and their extensions focus on recent improvements to the classification and regression techniques at the core of machine learning.

Machine Learning Algorithms and Applications

Download Machine Learning Algorithms and Applications PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119769248
Total Pages : 372 pages
Book Rating : 4.1/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Algorithms and Applications by : Mettu Srinivas

Download or read book Machine Learning Algorithms and Applications written by Mettu Srinivas and published by John Wiley & Sons. This book was released on 2021-08-10 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning Algorithms is for current and ambitious machine learning specialists looking to implement solutions to real-world machine learning problems. It talks entirely about the various applications of machine and deep learning techniques, with each chapter dealing with a novel approach of machine learning architecture for a specific application, and then compares the results with previous algorithms. The book discusses many methods based in different fields, including statistics, pattern recognition, neural networks, artificial intelligence, sentiment analysis, control, and data mining, in order to present a unified treatment of machine learning problems and solutions. All learning algorithms are explained so that the user can easily move from the equations in the book to a computer program.