Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Machine Learning In Geomechanics 2
Download Machine Learning In Geomechanics 2 full books in PDF, epub, and Kindle. Read online Machine Learning In Geomechanics 2 ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Machine Learning in Geomechanics 2 by : Ioannis Stefanou
Download or read book Machine Learning in Geomechanics 2 written by Ioannis Stefanou and published by John Wiley & Sons. This book was released on 2024-10-11 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning has led to incredible achievements in many different fields of science and technology. These varied methods of machine learning all offer powerful new tools to scientists and engineers and open new paths in geomechanics. The two volumes of Machine Learning in Geomechanics aim to demystify machine learning. They present the main methods and provide examples of its applications in mechanics and geomechanics. Most of the chapters provide a pedagogical introduction to the most important methods of machine learning and uncover the fundamental notions underlying them. Building from the simplest to the most sophisticated methods of machine learning, the books give several hands-on examples of coding to assist readers in understanding both the methods and their potential and identifying possible pitfalls.
Book Synopsis Reservoir Geomechanics by : Mark D. Zoback
Download or read book Reservoir Geomechanics written by Mark D. Zoback and published by Cambridge University Press. This book was released on 2010-04-01 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: This interdisciplinary book encompasses the fields of rock mechanics, structural geology and petroleum engineering to address a wide range of geomechanical problems that arise during the exploitation of oil and gas reservoirs. It considers key practical issues such as prediction of pore pressure, estimation of hydrocarbon column heights and fault seal potential, determination of optimally stable well trajectories, casing set points and mud weights, changes in reservoir performance during depletion, and production-induced faulting and subsidence. The book establishes the basic principles involved before introducing practical measurement and experimental techniques to improve recovery and reduce exploitation costs. It illustrates their successful application through case studies taken from oil and gas fields around the world. This book is a practical reference for geoscientists and engineers in the petroleum and geothermal industries, and for research scientists interested in stress measurements and their application to problems of faulting and fluid flow in the crust.
Book Synopsis Modeling in Geotechnical Engineering by : Pijush Samui
Download or read book Modeling in Geotechnical Engineering written by Pijush Samui and published by Academic Press. This book was released on 2020-12-01 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling in Geotechnical Engineering is a one stop reference for a range of computational models, the theory explaining how they work, and case studies describing how to apply them. Drawing on the expertise of contributors from a range of disciplines including geomechanics, optimization, and computational engineering, this book provides an interdisciplinary guide to this subject which is suitable for readers from a range of backgrounds. Before tackling the computational approaches, a theoretical understanding of the physical systems is provided that helps readers to fully grasp the significance of the numerical methods. The various models are presented in detail, and advice is provided on how to select the correct model for your application. - Provides detailed descriptions of different computational modelling methods for geotechnical applications, including the finite element method, the finite difference method, and the boundary element method - Gives readers the latest advice on the use of big data analytics and artificial intelligence in geotechnical engineering - Includes case studies to help readers apply the methods described in their own work
Book Synopsis Information Technology in Geo-Engineering by : António Gomes Correia
Download or read book Information Technology in Geo-Engineering written by António Gomes Correia and published by Springer Nature. This book was released on 2019-09-24 with total page 925 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings address the latest developments in information communication and technologies for geo-engineering. The 3rd International Conference on Information Technology in Geo-Engineering (ICITG 2019), held in Guimarães, Portugal, follows the previous successful installments of this conference series in Durham (2014) and Shanghai (2010). The respective chapters cover the following: Use of information and communications technologies Big data and databases Data mining and data science Imaging technologies Building information modelling applied to geo-structures Artificial intelligence Smart geomaterials and intelligent construction Sensors and monitoring Asset management Case studies on design, construction and maintenance Given its broad range of coverage, the book will benefit students, educators, researchers and professional practitioners alike, encouraging these readers to help take the geo-engineering community into the digital age
Book Synopsis Numerical Methods in Geotechnical Engineering by : Thomas Benz
Download or read book Numerical Methods in Geotechnical Engineering written by Thomas Benz and published by CRC Press. This book was released on 2010-05-25 with total page 970 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Methods in Geotechnical Engineering contains 153 scientific papers presented at the 7th European Conference on Numerical Methods in Geotechnical Engineering, NUMGE 2010, held at Norwegian University of Science and Technology (NTNU) in Trondheim, Norway, 2 4 June 2010.The contributions cover topics from emerging research to engineering pra
Book Synopsis Deep Learning for Physical Scientists by : Edward O. Pyzer-Knapp
Download or read book Deep Learning for Physical Scientists written by Edward O. Pyzer-Knapp and published by John Wiley & Sons. This book was released on 2021-09-20 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover the power of machine learning in the physical sciences with this one-stop resource from a leading voice in the field Deep Learning for Physical Scientists: Accelerating Research with Machine Learning delivers an insightful analysis of the transformative techniques being used in deep learning within the physical sciences. The book offers readers the ability to understand, select, and apply the best deep learning techniques for their individual research problem and interpret the outcome. Designed to teach researchers to think in useful new ways about how to achieve results in their research, the book provides scientists with new avenues to attack problems and avoid common pitfalls and problems. Practical case studies and problems are presented, giving readers an opportunity to put what they have learned into practice, with exemplar coding approaches provided to assist the reader. From modelling basics to feed-forward networks, the book offers a broad cross-section of machine learning techniques to improve physical science research. Readers will also enjoy: A thorough introduction to the basic classification and regression with perceptrons An exploration of training algorithms, including back propagation and stochastic gradient descent and the parallelization of training An examination of multi-layer perceptrons for learning from descriptors and de-noising data Discussions of recurrent neural networks for learning from sequences and convolutional neural networks for learning from images A treatment of Bayesian optimization for tuning deep learning architectures Perfect for academic and industrial research professionals in the physical sciences, Deep Learning for Physical Scientists: Accelerating Research with Machine Learning will also earn a place in the libraries of industrial researchers who have access to large amounts of data but have yet to learn the techniques to fully exploit that access. Perfect for academic and industrial research professionals in the physical sciences, em style="font-family: Calibri, sans-serif; font-size: 11pt;"Deep Learning for Physical Scientists: Accelerating Research with Machine Learning will also earn a place in the libraries of industrial researchers who have access to large amounts of data but have yet to learn the techniques to fully exploit that access. This book introduces the reader to the transformative techniques involved in deep learning. A range of methodologies are addressed including: •Basic classification and regression with perceptrons •Training algorithms, such as back propagation and stochastic gradient descent and the parallelization of training •Multi-Layer Perceptrons for learning from descriptors, and de-noising data •Recurrent neural networks for learning from sequences •Convolutional neural networks for learning from images •Bayesian optimization for tuning deep learning architectures Each of these areas has direct application to physical science research, and by the end of the book, the reader should feel comfortable enough to select the methodology which is best for their situation, and be able to implement and interpret outcome of the deep learning model. The book is designed to teach researchers to think in new ways, providing them with new avenues to attack problems, and avoid roadblocks within their research. This is achieved through the inclusion of case-study like problems at the end of each chapter, which will give the reader a chance to practice what they have just learnt in a close-to-real-world setting, with example ‘solutions’ provided through an online resource. Market Description This book introduces the reader to the transformative techniques involved in deep learning. A range of methodologies are addressed including: • Basic classification and regression with perceptrons • Training algorithms, such as back propagation and stochastic gradient descent and the parallelization of training • Multi-Layer Perceptrons for learning from descriptors, and de-noising data • Recurrent neural networks for learning from sequences • Convolutional neural networks for learning from images • Bayesian optimization for tuning deep learning architectures Each of these areas has direct application to physical science research, and by the end of the book, the reader should feel comfortable enough to select the methodology which is best for their situation, and be able to implement and interpret outcome of the deep learning model. The book is designed to teach researchers to think in new ways, providing them with new avenues to attack problems, and avoid roadblocks within their research. This is achieved through the inclusion of case-study like problems at the end of each chapter, which will give the reader a chance to practice what they have just learnt in a close-to-real-world setting, with example ‘solutions’ provided through an online resource.
Book Synopsis Hydrocarbon Exploration and Production by : Frank Jahn
Download or read book Hydrocarbon Exploration and Production written by Frank Jahn and published by Elsevier. This book was released on 1998-03-13 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book on hydrocarbon exploration and production is the first volume in the series Developments in Petroleum Science. The chapters are: The Field Life Cycle, Exploration, Drilling Engineering, Safety and The Environment, Reservoir Description, Volumetric Estimation, Field Appraisal, Reservoir Dynamic Behaviour, Well Dynamic Behaviour, Surface Facilities, Production Operations and Maintenance, Project and Contract Management, Petroleum Economics, Managing the Producing Field, and Decommissioning.
Book Synopsis Geotechnical Applications by : Anirudhan I.V.
Download or read book Geotechnical Applications written by Anirudhan I.V. and published by Springer. This book was released on 2018-06-12 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprises select proceedings of the annual conference of the Indian Geotechnical Society. The conference brings together research and case histories on various aspects of geotechnical engineering and geoenvironmental engineering. The book presents papers on geotechnical applications and case histories, covering topics such as (i) shallow and deep foundations; (ii) stability of earth and earth retaining structures; (iii) rock engineering, tunneling, and underground constructions; (iv) forensic investigations and case histories; (v) reliability in geotechnical engineering; and (vi) special topics such as offshore geotechnics, remote sensing and GIS, geotechnical education, codes, and standards. The contents of this book will be of interest to researchers and practicing engineers alike.
Book Synopsis Machine Learning and Artificial Intelligence in Geosciences by :
Download or read book Machine Learning and Artificial Intelligence in Geosciences written by and published by Academic Press. This book was released on 2020-09-22 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Geophysics, Volume 61 - Machine Learning and Artificial Intelligence in Geosciences, the latest release in this highly-respected publication in the field of geophysics, contains new chapters on a variety of topics, including a historical review on the development of machine learning, machine learning to investigate fault rupture on various scales, a review on machine learning techniques to describe fractured media, signal augmentation to improve the generalization of deep neural networks, deep generator priors for Bayesian seismic inversion, as well as a review on homogenization for seismology, and more. - Provides high-level reviews of the latest innovations in geophysics - Written by recognized experts in the field - Presents an essential publication for researchers in all fields of geophysics
Download or read book Canadian Geotechnical Journal written by and published by . This book was released on 2006 with total page 816 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Handbook of Geotechnical Investigation and Design Tables by : Burt G. Look
Download or read book Handbook of Geotechnical Investigation and Design Tables written by Burt G. Look and published by CRC Press. This book was released on 2007-04-26 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This practical handbook of properties for soils and rock contains, in a concise tabular format, the key issues relevant to geotechnical investigations, assessments and designs in common practice. In addition, there are brief notes on the application of the tables. These data tables are compiled for experienced geotechnical professionals who require a reference document to access key information. There is an extensive database of correlations for different applications. The book should provide a useful bridge between soil and rock mechanics theory and its application to practical engineering solutions. The initial chapters deal with the planning of the geotechnical investigation, the classification of the soil and rock properties and some of the more used testing is then covered. Later chapters show the reliability and correlations that are used to convert that data in the interpretative and assessment phase of the project. The final chapters apply some of these concepts to geotechnical design. This book is intended primarily for practicing geotechnical engineers working in investigation, assessment and design, but should provide a useful supplement for postgraduate courses.
Book Synopsis Deep Learning with Keras by : Antonio Gulli
Download or read book Deep Learning with Keras written by Antonio Gulli and published by Packt Publishing Ltd. This book was released on 2017-04-26 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get to grips with the basics of Keras to implement fast and efficient deep-learning models About This Book Implement various deep-learning algorithms in Keras and see how deep-learning can be used in games See how various deep-learning models and practical use-cases can be implemented using Keras A practical, hands-on guide with real-world examples to give you a strong foundation in Keras Who This Book Is For If you are a data scientist with experience in machine learning or an AI programmer with some exposure to neural networks, you will find this book a useful entry point to deep-learning with Keras. A knowledge of Python is required for this book. What You Will Learn Optimize step-by-step functions on a large neural network using the Backpropagation Algorithm Fine-tune a neural network to improve the quality of results Use deep learning for image and audio processing Use Recursive Neural Tensor Networks (RNTNs) to outperform standard word embedding in special cases Identify problems for which Recurrent Neural Network (RNN) solutions are suitable Explore the process required to implement Autoencoders Evolve a deep neural network using reinforcement learning In Detail This book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing with recognition of hand written digit images, classification of images into different categories, and advanced objects recognition with related image annotations. An example of identification of salient points for face detection is also provided. Next you will be introduced to Recurrent Networks, which are optimized for processing sequence data such as text, audio or time series. Following that, you will learn about unsupervised learning algorithms such as Autoencoders and the very popular Generative Adversarial Networks (GAN). You will also explore non-traditional uses of neural networks as Style Transfer. Finally, you will look at Reinforcement Learning and its application to AI game playing, another popular direction of research and application of neural networks. Style and approach This book is an easy-to-follow guide full of examples and real-world applications to help you gain an in-depth understanding of Keras. This book will showcase more than twenty working Deep Neural Networks coded in Python using Keras.
Book Synopsis Unconventional Reservoir Geomechanics by : Mark D. Zoback
Download or read book Unconventional Reservoir Geomechanics written by Mark D. Zoback and published by Cambridge University Press. This book was released on 2019-05-16 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive overview of the key geologic, geomechanical and engineering principles that govern the development of unconventional oil and gas reservoirs. Covering hydrocarbon-bearing formations, horizontal drilling, reservoir seismology and environmental impacts, this is an invaluable resource for geologists, geophysicists and reservoir engineers.
Book Synopsis Real-World Machine Learning by : Henrik Brink
Download or read book Real-World Machine Learning written by Henrik Brink and published by Simon and Schuster. This book was released on 2016-09-15 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Real-World Machine Learning is a practical guide designed to teach working developers the art of ML project execution. Without overdosing you on academic theory and complex mathematics, it introduces the day-to-day practice of machine learning, preparing you to successfully build and deploy powerful ML systems. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning systems help you find valuable insights and patterns in data, which you'd never recognize with traditional methods. In the real world, ML techniques give you a way to identify trends, forecast behavior, and make fact-based recommendations. It's a hot and growing field, and up-to-speed ML developers are in demand. About the Book Real-World Machine Learning will teach you the concepts and techniques you need to be a successful machine learning practitioner without overdosing you on abstract theory and complex mathematics. By working through immediately relevant examples in Python, you'll build skills in data acquisition and modeling, classification, and regression. You'll also explore the most important tasks like model validation, optimization, scalability, and real-time streaming. When you're done, you'll be ready to successfully build, deploy, and maintain your own powerful ML systems. What's Inside Predicting future behavior Performance evaluation and optimization Analyzing sentiment and making recommendations About the Reader No prior machine learning experience assumed. Readers should know Python. About the Authors Henrik Brink, Joseph Richards and Mark Fetherolf are experienced data scientists engaged in the daily practice of machine learning. Table of Contents PART 1: THE MACHINE-LEARNING WORKFLOW What is machine learning? Real-world data Modeling and prediction Model evaluation and optimization Basic feature engineering PART 2: PRACTICAL APPLICATION Example: NYC taxi data Advanced feature engineering Advanced NLP example: movie review sentiment Scaling machine-learning workflows Example: digital display advertising
Book Synopsis Reservoir Characterization by : Larry Lake
Download or read book Reservoir Characterization written by Larry Lake and published by Elsevier. This book was released on 2012-12-02 with total page 680 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reservoir Characterization is a collection of papers presented at the Reservoir Characterization Technical Conference, held at the Westin Hotel-Galleria in Dallas on April 29-May 1, 1985. Conference held April 29-May 1, 1985, at the Westin Hotel—Galleria in Dallas. The conference was sponsored by the National Institute for Petroleum and Energy Research, Bartlesville, Oklahoma. Reservoir characterization is a process for quantitatively assigning reservoir properties, recognizing geologic information and uncertainties in spatial variability. This book contains 19 chapters, and begins with the geological characterization of sandstone reservoir, followed by the geological prediction of shale distribution within the Prudhoe Bay field. The subsequent chapters are devoted to determination of reservoir properties, such as porosity, mineral occurrence, and permeability variation estimation. The discussion then shifts to the utility of a Bayesian-type formalism to delineate qualitative ""soft"" information and expert interpretation of reservoir description data. This topic is followed by papers concerning reservoir simulation, parameter assignment, and method of calculation of wetting phase relative permeability. This text also deals with the role of discontinuous vertical flow barriers in reservoir engineering. The last chapters focus on the effect of reservoir heterogeneity on oil reservoir. Petroleum engineers, scientists, and researchers will find this book of great value.
Book Synopsis Neural Networks and Deep Learning by : Charu C. Aggarwal
Download or read book Neural Networks and Deep Learning written by Charu C. Aggarwal and published by Springer. This book was released on 2018-08-25 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.
Book Synopsis The Evolution of Geotech - 25 Years of Innovation by : Reginald Hammah
Download or read book The Evolution of Geotech - 25 Years of Innovation written by Reginald Hammah and published by CRC Press. This book was released on 2021-11-23 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: This publication includes 82 technical papers presented at Rocscience International Conference (RIC) 2021, held online on April 20 and 21, 2021. Rocscience created this event to bring geotechnical academics, researchers and practitioners together to exchange ideas as part of celebrating 25 years of the company’s existence. The papers in these proceedings were from keynotes, panel discussions and papers, selected after careful review of over 100 technical submissions delivered at RIC 2021. The technical papers were grouped into sessions based on their subject areas. The conference aimed to stimulate discussions that could help the industry work towards overcoming geotechnical engineering limitations today. It also sought to foster creative thinking that will advance the current states of the art and practice. The keynote addresses, panel discussions and technical presentations tried to examine geotechnical problems and situations from fresh perspectives. RIC 2021 hopes that the proceedings will continue to enrich our thinking and contribute to achieving a critical mass of change in our practices and approaches. We look forward to significant improvements in our industry.