Practical Weak Supervision

Download Practical Weak Supervision PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492077038
Total Pages : 193 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Practical Weak Supervision by : Wee Hyong Tok

Download or read book Practical Weak Supervision written by Wee Hyong Tok and published by "O'Reilly Media, Inc.". This book was released on 2021-09-30 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most data scientists and engineers today rely on quality labeled data to train machine learning models. But building a training set manually is time-consuming and expensive, leaving many companies with unfinished ML projects. There's a more practical approach. In this book, Wee Hyong Tok, Amit Bahree, and Senja Filipi show you how to create products using weakly supervised learning models. You'll learn how to build natural language processing and computer vision projects using weakly labeled datasets from Snorkel, a spin-off from the Stanford AI Lab. Because so many companies have pursued ML projects that never go beyond their labs, this book also provides a guide on how to ship the deep learning models you build. Get up to speed on the field of weak supervision, including ways to use it as part of the data science process Use Snorkel AI for weak supervision and data programming Get code examples for using Snorkel to label text and image datasets Use a weakly labeled dataset for text and image classification Learn practical considerations for using Snorkel with large datasets and using Spark clusters to scale labeling

Machine Learning from Weak Supervision

Download Machine Learning from Weak Supervision PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262370565
Total Pages : 315 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning from Weak Supervision by : Masashi Sugiyama

Download or read book Machine Learning from Weak Supervision written by Masashi Sugiyama and published by MIT Press. This book was released on 2022-08-23 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamental theory and practical algorithms of weakly supervised classification, emphasizing an approach based on empirical risk minimization. Standard machine learning techniques require large amounts of labeled data to work well. When we apply machine learning to problems in the physical world, however, it is extremely difficult to collect such quantities of labeled data. In this book Masashi Sugiyama, Han Bao, Takashi Ishida, Nan Lu, Tomoya Sakai and Gang Niu present theory and algorithms for weakly supervised learning, a paradigm of machine learning from weakly labeled data. Emphasizing an approach based on empirical risk minimization and drawing on state-of-the-art research in weakly supervised learning, the book provides both the fundamentals of the field and the advanced mathematical theories underlying them. It can be used as a reference for practitioners and researchers and in the classroom. The book first mathematically formulates classification problems, defines common notations, and reviews various algorithms for supervised binary and multiclass classification. It then explores problems of binary weakly supervised classification, including positive-unlabeled (PU) classification, positive-negative-unlabeled (PNU) classification, and unlabeled-unlabeled (UU) classification. It then turns to multiclass classification, discussing complementary-label (CL) classification and partial-label (PL) classification. Finally, the book addresses more advanced issues, including a family of correction methods to improve the generalization performance of weakly supervised learning and the problem of class-prior estimation.

Machine Learning and Data Science Blueprints for Finance

Download Machine Learning and Data Science Blueprints for Finance PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492073008
Total Pages : 426 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Data Science Blueprints for Finance by : Hariom Tatsat

Download or read book Machine Learning and Data Science Blueprints for Finance written by Hariom Tatsat and published by "O'Reilly Media, Inc.". This book was released on 2020-10-01 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the next few decades, machine learning and data science will transform the finance industry. With this practical book, analysts, traders, researchers, and developers will learn how to build machine learning algorithms crucial to the industry. You'll examine ML concepts and over 20 case studies in supervised, unsupervised, and reinforcement learning, along with natural language processing (NLP). Ideal for professionals working at hedge funds, investment and retail banks, and fintech firms, this book also delves deep into portfolio management, algorithmic trading, derivative pricing, fraud detection, asset price prediction, sentiment analysis, and chatbot development. You'll explore real-life problems faced by practitioners and learn scientifically sound solutions supported by code and examples. This book covers: Supervised learning regression-based models for trading strategies, derivative pricing, and portfolio management Supervised learning classification-based models for credit default risk prediction, fraud detection, and trading strategies Dimensionality reduction techniques with case studies in portfolio management, trading strategy, and yield curve construction Algorithms and clustering techniques for finding similar objects, with case studies in trading strategies and portfolio management Reinforcement learning models and techniques used for building trading strategies, derivatives hedging, and portfolio management NLP techniques using Python libraries such as NLTK and scikit-learn for transforming text into meaningful representations

Semantic Systems. The Power of AI and Knowledge Graphs

Download Semantic Systems. The Power of AI and Knowledge Graphs PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030332209
Total Pages : 400 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Semantic Systems. The Power of AI and Knowledge Graphs by : Maribel Acosta

Download or read book Semantic Systems. The Power of AI and Knowledge Graphs written by Maribel Acosta and published by Springer Nature. This book was released on 2019-11-04 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book constitutes the refereed proceedings of the 15th International Conference on Semantic Systems, SEMANTiCS 2019, held in Karlsruhe, Germany, in September 2019. The 20 full papers and 8 short papers presented in this volume were carefully reviewed and selected from 88 submissions. They cover topics such as: web semantics and linked (open) data; machine learning and deep learning techniques; semantic information management and knowledge integration; terminology, thesaurus and ontology management; data mining and knowledge discovery; semantics in blockchain and distributed ledger technologies.

Fundamentals and Methods of Machine and Deep Learning

Download Fundamentals and Methods of Machine and Deep Learning PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119821886
Total Pages : 480 pages
Book Rating : 4.1/5 (198 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals and Methods of Machine and Deep Learning by : Pradeep Singh

Download or read book Fundamentals and Methods of Machine and Deep Learning written by Pradeep Singh and published by John Wiley & Sons. This book was released on 2022-02-01 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: FUNDAMENTALS AND METHODS OF MACHINE AND DEEP LEARNING The book provides a practical approach by explaining the concepts of machine learning and deep learning algorithms, evaluation of methodology advances, and algorithm demonstrations with applications. Over the past two decades, the field of machine learning and its subfield deep learning have played a main role in software applications development. Also, in recent research studies, they are regarded as one of the disruptive technologies that will transform our future life, business, and the global economy. The recent explosion of digital data in a wide variety of domains, including science, engineering, Internet of Things, biomedical, healthcare, and many business sectors, has declared the era of big data, which cannot be analysed by classical statistics but by the more modern, robust machine learning and deep learning techniques. Since machine learning learns from data rather than by programming hard-coded decision rules, an attempt is being made to use machine learning to make computers that are able to solve problems like human experts in the field. The goal of this book is to present a??practical approach by explaining the concepts of machine learning and deep learning algorithms with applications. Supervised machine learning algorithms, ensemble machine learning algorithms, feature selection, deep learning techniques, and their applications are discussed. Also included in the eighteen chapters is unique information which provides a clear understanding of concepts by using algorithms and case studies illustrated with applications of machine learning and deep learning in different domains, including disease prediction, software defect prediction, online television analysis, medical image processing, etc. Each of the chapters briefly described below provides both a chosen approach and its implementation. Audience Researchers and engineers in artificial intelligence, computer scientists as well as software developers.

Empirical Approach to Machine Learning

Download Empirical Approach to Machine Learning PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030023842
Total Pages : 437 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Empirical Approach to Machine Learning by : Plamen P. Angelov

Download or read book Empirical Approach to Machine Learning written by Plamen P. Angelov and published by Springer. This book was released on 2018-10-17 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a ‘one-stop source’ for all readers who are interested in a new, empirical approach to machine learning that, unlike traditional methods, successfully addresses the demands of today’s data-driven world. After an introduction to the fundamentals, the book discusses in depth anomaly detection, data partitioning and clustering, as well as classification and predictors. It describes classifiers of zero and first order, and the new, highly efficient and transparent deep rule-based classifiers, particularly highlighting their applications to image processing. Local optimality and stability conditions for the methods presented are formally derived and stated, while the software is also provided as supplemental, open-source material. The book will greatly benefit postgraduate students, researchers and practitioners dealing with advanced data processing, applied mathematicians, software developers of agent-oriented systems, and developers of embedded and real-time systems. It can also be used as a textbook for postgraduate coursework; for this purpose, a standalone set of lecture notes and corresponding lab session notes are available on the same website as the code. Dimitar Filev, Henry Ford Technical Fellow, Ford Motor Company, USA, and Member of the National Academy of Engineering, USA: “The book Empirical Approach to Machine Learning opens new horizons to automated and efficient data processing.” Paul J. Werbos, Inventor of the back-propagation method, USA: “I owe great thanks to Professor Plamen Angelov for making this important material available to the community just as I see great practical needs for it, in the new area of making real sense of high-speed data from the brain.” Chin-Teng Lin, Distinguished Professor at University of Technology Sydney, Australia: “This new book will set up a milestone for the modern intelligent systems.” Edward Tunstel, President of IEEE Systems, Man, Cybernetics Society, USA: “Empirical Approach to Machine Learning provides an insightful and visionary boost of progress in the evolution of computational learning capabilities yielding interpretable and transparent implementations.”

Semi-Supervised Learning

Download Semi-Supervised Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262514125
Total Pages : 525 pages
Book Rating : 4.2/5 (625 download)

DOWNLOAD NOW!


Book Synopsis Semi-Supervised Learning by : Olivier Chapelle

Download or read book Semi-Supervised Learning written by Olivier Chapelle and published by MIT Press. This book was released on 2010-01-22 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive review of an area of machine learning that deals with the use of unlabeled data in classification problems: state-of-the-art algorithms, a taxonomy of the field, applications, benchmark experiments, and directions for future research. In the field of machine learning, semi-supervised learning (SSL) occupies the middle ground, between supervised learning (in which all training examples are labeled) and unsupervised learning (in which no label data are given). Interest in SSL has increased in recent years, particularly because of application domains in which unlabeled data are plentiful, such as images, text, and bioinformatics. This first comprehensive overview of SSL presents state-of-the-art algorithms, a taxonomy of the field, selected applications, benchmark experiments, and perspectives on ongoing and future research.Semi-Supervised Learning first presents the key assumptions and ideas underlying the field: smoothness, cluster or low-density separation, manifold structure, and transduction. The core of the book is the presentation of SSL methods, organized according to algorithmic strategies. After an examination of generative models, the book describes algorithms that implement the low-density separation assumption, graph-based methods, and algorithms that perform two-step learning. The book then discusses SSL applications and offers guidelines for SSL practitioners by analyzing the results of extensive benchmark experiments. Finally, the book looks at interesting directions for SSL research. The book closes with a discussion of the relationship between semi-supervised learning and transduction.

Introduction to Semi-Supervised Learning

Download Introduction to Semi-Supervised Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031015487
Total Pages : 116 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Semi-Supervised Learning by : Xiaojin Geffner

Download or read book Introduction to Semi-Supervised Learning written by Xiaojin Geffner and published by Springer Nature. This book was released on 2022-05-31 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data are scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervised support vector machines. For each model, we discuss its basic mathematical formulation. The success of semi-supervised learning depends critically on some underlying assumptions. We emphasize the assumptions made by each model and give counterexamples when appropriate to demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-supervised learning, and we conclude the book with a brief discussion of open questions in the field. Table of Contents: Introduction to Statistical Machine Learning / Overview of Semi-Supervised Learning / Mixture Models and EM / Co-Training / Graph-Based Semi-Supervised Learning / Semi-Supervised Support Vector Machines / Human Semi-Supervised Learning / Theory and Outlook

Detecting Fake News on Social Media

Download Detecting Fake News on Social Media PDF Online Free

Author :
Publisher : Morgan & Claypool Publishers
ISBN 13 : 1681735830
Total Pages : 131 pages
Book Rating : 4.6/5 (817 download)

DOWNLOAD NOW!


Book Synopsis Detecting Fake News on Social Media by : Kai Shu

Download or read book Detecting Fake News on Social Media written by Kai Shu and published by Morgan & Claypool Publishers. This book was released on 2019-07-03 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an accessible introduction to the study of detecting fake news on social media. The concepts, algorithms, and methods described in this book can help harness the power of social media to build effective and intelligent fake news detection systems. In the past decade, social media is becoming increasingly popular for news consumption due to its easy access, fast dissemination, and low cost. However, social media also enables the wide propagation of "fake news," i.e., news with intentionally false information. Fake news on social media can have significant negative societal effects. Therefore, fake news detection on social media has recently become an emerging research that is attracting tremendous attention. From a data mining perspective, this book introduces the basic concepts and characteristics of fake news across disciplines, reviews representative fake news detection methods in a principled way, and illustrates advanced settings of fake news detection on social media. In particular, the authors discuss the value of news content and social context, as well as important extensions to handle early detection, weakly-supervised detection, and explainable detection. This is essential reading for students, researchers, and practitioners to understand, manage, and excel in this area. This book is supported by additional materials, including lecture slides, the complete set of figures, key references, datasets, tools used in this book, and the source code of representative algorithms.

Machine Learning - A Journey To Deep Learning: With Exercises And Answers

Download Machine Learning - A Journey To Deep Learning: With Exercises And Answers PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9811234078
Total Pages : 641 pages
Book Rating : 4.8/5 (112 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning - A Journey To Deep Learning: With Exercises And Answers by : Andreas Miroslaus Wichert

Download or read book Machine Learning - A Journey To Deep Learning: With Exercises And Answers written by Andreas Miroslaus Wichert and published by World Scientific. This book was released on 2021-01-26 with total page 641 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique compendium discusses some core ideas for the development and implementation of machine learning from three different perspectives — the statistical perspective, the artificial neural network perspective and the deep learning methodology.The useful reference text represents a solid foundation in machine learning and should prepare readers to apply and understand machine learning algorithms as well as to invent new machine learning methods. It tells a story outgoing from a perceptron to deep learning highlighted with concrete examples, including exercises and answers for the students.Related Link(s)

Big Data Integration

Download Big Data Integration PDF Online Free

Author :
Publisher : Morgan & Claypool Publishers
ISBN 13 : 1627052240
Total Pages : 200 pages
Book Rating : 4.6/5 (27 download)

DOWNLOAD NOW!


Book Synopsis Big Data Integration by : Xin Luna Dong

Download or read book Big Data Integration written by Xin Luna Dong and published by Morgan & Claypool Publishers. This book was released on 2015-02-01 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: The big data era is upon us: data are being generated, analyzed, and used at an unprecedented scale, and data-driven decision making is sweeping through all aspects of society. Since the value of data explodes when it can be linked and fused with other data, addressing the big data integration (BDI) challenge is critical to realizing the promise of big data. BDI differs from traditional data integration along the dimensions of volume, velocity, variety, and veracity. First, not only can data sources contain a huge volume of data, but also the number of data sources is now in the millions. Second, because of the rate at which newly collected data are made available, many of the data sources are very dynamic, and the number of data sources is also rapidly exploding. Third, data sources are extremely heterogeneous in their structure and content, exhibiting considerable variety even for substantially similar entities. Fourth, the data sources are of widely differing qualities, with significant differences in the coverage, accuracy and timeliness of data provided. This book explores the progress that has been made by the data integration community on the topics of schema alignment, record linkage and data fusion in addressing these novel challenges faced by big data integration. Each of these topics is covered in a systematic way: first starting with a quick tour of the topic in the context of traditional data integration, followed by a detailed, example-driven exposition of recent innovative techniques that have been proposed to address the BDI challenges of volume, velocity, variety, and veracity. Finally, it presents merging topics and opportunities that are specific to BDI, identifying promising directions for the data integration community.

An Introduction To Machine Learning In Quantitative Finance

Download An Introduction To Machine Learning In Quantitative Finance PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 1786349388
Total Pages : 263 pages
Book Rating : 4.7/5 (863 download)

DOWNLOAD NOW!


Book Synopsis An Introduction To Machine Learning In Quantitative Finance by : Hao Ni

Download or read book An Introduction To Machine Learning In Quantitative Finance written by Hao Ni and published by World Scientific. This book was released on 2021-04-07 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: In today's world, we are increasingly exposed to the words 'machine learning' (ML), a term which sounds like a panacea designed to cure all problems ranging from image recognition to machine language translation. Over the past few years, ML has gradually permeated the financial sector, reshaping the landscape of quantitative finance as we know it.An Introduction to Machine Learning in Quantitative Finance aims to demystify ML by uncovering its underlying mathematics and showing how to apply ML methods to real-world financial data. In this book the authorsFeatured with the balance of mathematical theorems and practical code examples of ML, this book will help you acquire an in-depth understanding of ML algorithms as well as hands-on experience. After reading An Introduction to Machine Learning in Quantitative Finance, ML tools will not be a black box to you anymore, and you will feel confident in successfully applying what you have learnt to empirical financial data!

Imaging Flow Cytometry

Download Imaging Flow Cytometry PDF Online Free

Author :
Publisher : Humana
ISBN 13 : 9781493933006
Total Pages : 0 pages
Book Rating : 4.9/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Imaging Flow Cytometry by : Natasha S. Barteneva

Download or read book Imaging Flow Cytometry written by Natasha S. Barteneva and published by Humana. This book was released on 2015-11-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This detailed volume for the first time explores techniques and protocols involving quantitative imaging flow cytometry (IFC), which has revolutionized our ability to analyze cells, cellular clusters, and populations in a remarkable fashion. Beginning with an introduction to technology, the book continues with sections addressing protocols for studies on the cell nucleus, nucleic acids, and FISH techniques using an IFC instrument, immune response analysis and drug screening, IFC protocols for apoptosis and cell death analysis, as well as morphological analysis and the identification of rare cells. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Imaging Flow Cytometry: Methods and Protocols will be a critical source for all laboratories seeking to implement IFC in their research studies.

Practical Natural Language Processing

Download Practical Natural Language Processing PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 149205402X
Total Pages : 455 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Practical Natural Language Processing by : Sowmya Vajjala

Download or read book Practical Natural Language Processing written by Sowmya Vajjala and published by O'Reilly Media. This book was released on 2020-06-17 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many books and courses tackle natural language processing (NLP) problems with toy use cases and well-defined datasets. But if you want to build, iterate, and scale NLP systems in a business setting and tailor them for particular industry verticals, this is your guide. Software engineers and data scientists will learn how to navigate the maze of options available at each step of the journey. Through the course of the book, authors Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, and Harshit Surana will guide you through the process of building real-world NLP solutions embedded in larger product setups. You’ll learn how to adapt your solutions for different industry verticals such as healthcare, social media, and retail. With this book, you’ll: Understand the wide spectrum of problem statements, tasks, and solution approaches within NLP Implement and evaluate different NLP applications using machine learning and deep learning methods Fine-tune your NLP solution based on your business problem and industry vertical Evaluate various algorithms and approaches for NLP product tasks, datasets, and stages Produce software solutions following best practices around release, deployment, and DevOps for NLP systems Understand best practices, opportunities, and the roadmap for NLP from a business and product leader’s perspective

Proceedings of the 2017 ACM International Conference on Management of Data

Download Proceedings of the 2017 ACM International Conference on Management of Data PDF Online Free

Author :
Publisher :
ISBN 13 : 9781450341998
Total Pages : pages
Book Rating : 4.3/5 (419 download)

DOWNLOAD NOW!


Book Synopsis Proceedings of the 2017 ACM International Conference on Management of Data by : Alvin Cheung

Download or read book Proceedings of the 2017 ACM International Conference on Management of Data written by Alvin Cheung and published by . This book was released on 2017-05-14 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: SIGMOD/PODS'17: International Conference on Management of Data May 14, 2017-May 19, 2017 Chicago, USA. You can view more information about this proceeding and all of ACM�s other published conference proceedings from the ACM Digital Library: http://www.acm.org/dl.

Transfer Learning

Download Transfer Learning PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108860087
Total Pages : 394 pages
Book Rating : 4.1/5 (88 download)

DOWNLOAD NOW!


Book Synopsis Transfer Learning by : Qiang Yang

Download or read book Transfer Learning written by Qiang Yang and published by Cambridge University Press. This book was released on 2020-02-13 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transfer learning deals with how systems can quickly adapt themselves to new situations, tasks and environments. It gives machine learning systems the ability to leverage auxiliary data and models to help solve target problems when there is only a small amount of data available. This makes such systems more reliable and robust, keeping the machine learning model faced with unforeseeable changes from deviating too much from expected performance. At an enterprise level, transfer learning allows knowledge to be reused so experience gained once can be repeatedly applied to the real world. For example, a pre-trained model that takes account of user privacy can be downloaded and adapted at the edge of a computer network. This self-contained, comprehensive reference text describes the standard algorithms and demonstrates how these are used in different transfer learning paradigms. It offers a solid grounding for newcomers as well as new insights for seasoned researchers and developers.

Program Synthesis

Download Program Synthesis PDF Online Free

Author :
Publisher :
ISBN 13 : 9781680832921
Total Pages : 138 pages
Book Rating : 4.8/5 (329 download)

DOWNLOAD NOW!


Book Synopsis Program Synthesis by : Sumit Gulwani

Download or read book Program Synthesis written by Sumit Gulwani and published by . This book was released on 2017-07-11 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: Program synthesis is the task of automatically finding a program in the underlying programming language that satisfies the user intent expressed in the form of some specification. Since the inception of artificial intelligence in the 1950s, this problem has been considered the holy grail of Computer Science. Despite inherent challenges in the problem such as ambiguity of user intent and a typically enormous search space of programs, the field of program synthesis has developed many different techniques that enable program synthesis in different real-life application domains. It is now used successfully in software engineering, biological discovery, compute-raided education, end-user programming, and data cleaning. In the last decade, several applications of synthesis in the field of programming by examples have been deployed in mass-market industrial products. This monograph is a general overview of the state-of-the-art approaches to program synthesis, its applications, and subfields. It discusses the general principles common to all modern synthesis approaches such as syntactic bias, oracle-guided inductive search, and optimization techniques. We then present a literature review covering the four most common state-of-the-art techniques in program synthesis: enumerative search, constraint solving, stochastic search, and deduction-based programming by examples. It concludes with a brief list of future horizons for the field.