Machine Learning for Risk Calculations

Download Machine Learning for Risk Calculations PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119791383
Total Pages : 471 pages
Book Rating : 4.1/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Risk Calculations by : Ignacio Ruiz

Download or read book Machine Learning for Risk Calculations written by Ignacio Ruiz and published by John Wiley & Sons. This book was released on 2021-12-28 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: State-of-the-art algorithmic deep learning and tensoring techniques for financial institutions The computational demand of risk calculations in financial institutions has ballooned and shows no sign of stopping. It is no longer viable to simply add more computing power to deal with this increased demand. The solution? Algorithmic solutions based on deep learning and Chebyshev tensors represent a practical way to reduce costs while simultaneously increasing risk calculation capabilities. Machine Learning for Risk Calculations: A Practitioner’s View provides an in-depth review of a number of algorithmic solutions and demonstrates how they can be used to overcome the massive computational burden of risk calculations in financial institutions. This book will get you started by reviewing fundamental techniques, including deep learning and Chebyshev tensors. You’ll then discover algorithmic tools that, in combination with the fundamentals, deliver actual solutions to the real problems financial institutions encounter on a regular basis. Numerical tests and examples demonstrate how these solutions can be applied to practical problems, including XVA and Counterparty Credit Risk, IMM capital, PFE, VaR, FRTB, Dynamic Initial Margin, pricing function calibration, volatility surface parametrisation, portfolio optimisation and others. Finally, you’ll uncover the benefits these techniques provide, the practicalities of implementing them, and the software which can be used. Review the fundamentals of deep learning and Chebyshev tensors Discover pioneering algorithmic techniques that can create new opportunities in complex risk calculation Learn how to apply the solutions to a wide range of real-life risk calculations. Download sample code used in the book, so you can follow along and experiment with your own calculations Realize improved risk management whilst overcoming the burden of limited computational power Quants, IT professionals, and financial risk managers will benefit from this practitioner-oriented approach to state-of-the-art risk calculation.

Machine Learning for Risk Calculations

Download Machine Learning for Risk Calculations PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119791405
Total Pages : 471 pages
Book Rating : 4.1/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Risk Calculations by : Ignacio Ruiz

Download or read book Machine Learning for Risk Calculations written by Ignacio Ruiz and published by John Wiley & Sons. This book was released on 2021-12-20 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: State-of-the-art algorithmic deep learning and tensoring techniques for financial institutions The computational demand of risk calculations in financial institutions has ballooned and shows no sign of stopping. It is no longer viable to simply add more computing power to deal with this increased demand. The solution? Algorithmic solutions based on deep learning and Chebyshev tensors represent a practical way to reduce costs while simultaneously increasing risk calculation capabilities. Machine Learning for Risk Calculations: A Practitioner’s View provides an in-depth review of a number of algorithmic solutions and demonstrates how they can be used to overcome the massive computational burden of risk calculations in financial institutions. This book will get you started by reviewing fundamental techniques, including deep learning and Chebyshev tensors. You’ll then discover algorithmic tools that, in combination with the fundamentals, deliver actual solutions to the real problems financial institutions encounter on a regular basis. Numerical tests and examples demonstrate how these solutions can be applied to practical problems, including XVA and Counterparty Credit Risk, IMM capital, PFE, VaR, FRTB, Dynamic Initial Margin, pricing function calibration, volatility surface parametrisation, portfolio optimisation and others. Finally, you’ll uncover the benefits these techniques provide, the practicalities of implementing them, and the software which can be used. Review the fundamentals of deep learning and Chebyshev tensors Discover pioneering algorithmic techniques that can create new opportunities in complex risk calculation Learn how to apply the solutions to a wide range of real-life risk calculations. Download sample code used in the book, so you can follow along and experiment with your own calculations Realize improved risk management whilst overcoming the burden of limited computational power Quants, IT professionals, and financial risk managers will benefit from this practitioner-oriented approach to state-of-the-art risk calculation.

Machine Learning for Financial Risk Management with Python

Download Machine Learning for Financial Risk Management with Python PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492085200
Total Pages : 334 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Financial Risk Management with Python by : Abdullah Karasan

Download or read book Machine Learning for Financial Risk Management with Python written by Abdullah Karasan and published by "O'Reilly Media, Inc.". This book was released on 2021-12-07 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Financial risk management is quickly evolving with the help of artificial intelligence. With this practical book, developers, programmers, engineers, financial analysts, risk analysts, and quantitative and algorithmic analysts will examine Python-based machine learning and deep learning models for assessing financial risk. Building hands-on AI-based financial modeling skills, you'll learn how to replace traditional financial risk models with ML models. Author Abdullah Karasan helps you explore the theory behind financial risk modeling before diving into practical ways of employing ML models in modeling financial risk using Python. With this book, you will: Review classical time series applications and compare them with deep learning models Explore volatility modeling to measure degrees of risk, using support vector regression, neural networks, and deep learning Improve market risk models (VaR and ES) using ML techniques and including liquidity dimension Develop a credit risk analysis using clustering and Bayesian approaches Capture different aspects of liquidity risk with a Gaussian mixture model and Copula model Use machine learning models for fraud detection Predict stock price crash and identify its determinants using machine learning models

Machine Learning Risk Assessments in Criminal Justice Settings

Download Machine Learning Risk Assessments in Criminal Justice Settings PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030022722
Total Pages : 184 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Risk Assessments in Criminal Justice Settings by : Richard Berk

Download or read book Machine Learning Risk Assessments in Criminal Justice Settings written by Richard Berk and published by Springer. This book was released on 2018-12-13 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book puts in one place and in accessible form Richard Berk’s most recent work on forecasts of re-offending by individuals already in criminal justice custody. Using machine learning statistical procedures trained on very large datasets, an explicit introduction of the relative costs of forecasting errors as the forecasts are constructed, and an emphasis on maximizing forecasting accuracy, the author shows how his decades of research on the topic improves forecasts of risk. Criminal justice risk forecasts anticipate the future behavior of specified individuals, rather than “predictive policing” for locations in time and space, which is a very different enterprise that uses different data different data analysis tools. The audience for this book includes graduate students and researchers in the social sciences, and data analysts in criminal justice agencies. Formal mathematics is used only as necessary or in concert with more intuitive explanations.

Disrupting Finance

Download Disrupting Finance PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030023303
Total Pages : 194 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Disrupting Finance by : Theo Lynn

Download or read book Disrupting Finance written by Theo Lynn and published by Springer. This book was released on 2018-12-06 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access Pivot demonstrates how a variety of technologies act as innovation catalysts within the banking and financial services sector. Traditional banks and financial services are under increasing competition from global IT companies such as Google, Apple, Amazon and PayPal whilst facing pressure from investors to reduce costs, increase agility and improve customer retention. Technologies such as blockchain, cloud computing, mobile technologies, big data analytics and social media therefore have perhaps more potential in this industry and area of business than any other. This book defines a fintech ecosystem for the 21st century, providing a state-of-the art review of current literature, suggesting avenues for new research and offering perspectives from business, technology and industry.

Mathematics for Machine Learning

Download Mathematics for Machine Learning PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108569323
Total Pages : 392 pages
Book Rating : 4.1/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Mathematics for Machine Learning by : Marc Peter Deisenroth

Download or read book Mathematics for Machine Learning written by Marc Peter Deisenroth and published by Cambridge University Press. This book was released on 2020-04-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Implementing Machine Learning for Finance

Download Implementing Machine Learning for Finance PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 9781484271094
Total Pages : 182 pages
Book Rating : 4.2/5 (71 download)

DOWNLOAD NOW!


Book Synopsis Implementing Machine Learning for Finance by : Tshepo Chris Nokeri

Download or read book Implementing Machine Learning for Finance written by Tshepo Chris Nokeri and published by Apress. This book was released on 2021-05-27 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bring together machine learning (ML) and deep learning (DL) in financial trading, with an emphasis on investment management. This book explains systematic approaches to investment portfolio management, risk analysis, and performance analysis, including predictive analytics using data science procedures. The book introduces pattern recognition and future price forecasting that exerts effects on time series analysis models, such as the Autoregressive Integrated Moving Average (ARIMA) model, Seasonal ARIMA (SARIMA) model, and Additive model, and it covers the Least Squares model and the Long Short-Term Memory (LSTM) model. It presents hidden pattern recognition and market regime prediction applying the Gaussian Hidden Markov Model. The book covers the practical application of the K-Means model in stock clustering. It establishes the practical application of the Variance-Covariance method and Simulation method (using Monte Carlo Simulation) for value at risk estimation. It also includes market direction classification using both the Logistic classifier and the Multilayer Perceptron classifier. Finally, the book presents performance and risk analysis for investment portfolios. By the end of this book, you should be able to explain how algorithmic trading works and its practical application in the real world, and know how to apply supervised and unsupervised ML and DL models to bolster investment decision making and implement and optimize investment strategies and systems. What You Will Learn Understand the fundamentals of the financial market and algorithmic trading, as well as supervised and unsupervised learning models that are appropriate for systematic investment portfolio management Know the concepts of feature engineering, data visualization, and hyperparameter optimization Design, build, and test supervised and unsupervised ML and DL models Discover seasonality, trends, and market regimes, simulating a change in the market and investment strategy problems and predicting market direction and prices Structure and optimize an investment portfolio with preeminent asset classes and measure the underlying risk Who This Book Is For Beginning and intermediate data scientists, machine learning engineers, business executives, and finance professionals (such as investment analysts and traders)

Understanding Machine Learning

Download Understanding Machine Learning PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107057132
Total Pages : 415 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Understanding Machine Learning by : Shai Shalev-Shwartz

Download or read book Understanding Machine Learning written by Shai Shalev-Shwartz and published by Cambridge University Press. This book was released on 2014-05-19 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.

Interpretable Machine Learning

Download Interpretable Machine Learning PDF Online Free

Author :
Publisher : Lulu.com
ISBN 13 : 0244768528
Total Pages : 320 pages
Book Rating : 4.2/5 (447 download)

DOWNLOAD NOW!


Book Synopsis Interpretable Machine Learning by : Christoph Molnar

Download or read book Interpretable Machine Learning written by Christoph Molnar and published by Lulu.com. This book was released on 2020 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance

Download Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance PDF Online Free

Author :
Publisher : International Monetary Fund
ISBN 13 : 1589063953
Total Pages : 35 pages
Book Rating : 4.5/5 (89 download)

DOWNLOAD NOW!


Book Synopsis Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance by : El Bachir Boukherouaa

Download or read book Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance written by El Bachir Boukherouaa and published by International Monetary Fund. This book was released on 2021-10-22 with total page 35 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper discusses the impact of the rapid adoption of artificial intelligence (AI) and machine learning (ML) in the financial sector. It highlights the benefits these technologies bring in terms of financial deepening and efficiency, while raising concerns about its potential in widening the digital divide between advanced and developing economies. The paper advances the discussion on the impact of this technology by distilling and categorizing the unique risks that it could pose to the integrity and stability of the financial system, policy challenges, and potential regulatory approaches. The evolving nature of this technology and its application in finance means that the full extent of its strengths and weaknesses is yet to be fully understood. Given the risk of unexpected pitfalls, countries will need to strengthen prudential oversight.

Bio-Inspired Credit Risk Analysis

Download Bio-Inspired Credit Risk Analysis PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9783642096556
Total Pages : 244 pages
Book Rating : 4.0/5 (965 download)

DOWNLOAD NOW!


Book Synopsis Bio-Inspired Credit Risk Analysis by : Lean Yu

Download or read book Bio-Inspired Credit Risk Analysis written by Lean Yu and published by Springer. This book was released on 2010-10-19 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: Credit risk analysis is one of the most important topics in the field of financial risk management. Due to recent financial crises and regulatory concern of Basel II, credit risk analysis has been the major focus of financial and banking industry. Especially for some credit-granting institutions such as commercial banks and credit companies, the ability to discriminate good customers from bad ones is crucial. The need for reliable quantitative models that predict defaults accurately is imperative so that the interested parties can take either preventive or corrective action. Hence credit risk analysis becomes very important for sustainability and profit of enterprises. In such backgrounds, this book tries to integrate recent emerging support vector machines and other computational intelligence techniques that replicate the principles of bio-inspired information processing to create some innovative methodologies for credit risk analysis and to provide decision support information for interested parties.

Machine Learning in Insurance

Download Machine Learning in Insurance PDF Online Free

Author :
Publisher : MDPI
ISBN 13 : 3039364472
Total Pages : 260 pages
Book Rating : 4.0/5 (393 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning in Insurance by : Jens Perch Nielsen

Download or read book Machine Learning in Insurance written by Jens Perch Nielsen and published by MDPI. This book was released on 2020-12-02 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning is a relatively new field, without a unanimous definition. In many ways, actuaries have been machine learners. In both pricing and reserving, but also more recently in capital modelling, actuaries have combined statistical methodology with a deep understanding of the problem at hand and how any solution may affect the company and its customers. One aspect that has, perhaps, not been so well developed among actuaries is validation. Discussions among actuaries’ “preferred methods” were often without solid scientific arguments, including validation of the case at hand. Through this collection, we aim to promote a good practice of machine learning in insurance, considering the following three key issues: a) who is the client, or sponsor, or otherwise interested real-life target of the study? b) The reason for working with a particular data set and a clarification of the available extra knowledge, that we also call prior knowledge, besides the data set alone. c) A mathematical statistical argument for the validation procedure.

Machine Learning in Finance

Download Machine Learning in Finance PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030410684
Total Pages : 565 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning in Finance by : Matthew F. Dixon

Download or read book Machine Learning in Finance written by Matthew F. Dixon and published by Springer Nature. This book was released on 2020-07-01 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources and larger datasets, machine learning has grown into an important skillset for the finance industry. This book is written for advanced graduate students and academics in financial econometrics, mathematical finance and applied statistics, in addition to quants and data scientists in the field of quantitative finance. Machine Learning in Finance: From Theory to Practice is divided into three parts, each part covering theory and applications. The first presents supervised learning for cross-sectional data from both a Bayesian and frequentist perspective. The more advanced material places a firm emphasis on neural networks, including deep learning, as well as Gaussian processes, with examples in investment management and derivative modeling. The second part presents supervised learning for time series data, arguably the most common data type used in finance with examples in trading, stochastic volatility and fixed income modeling. Finally, the third part presents reinforcement learning and its applications in trading, investment and wealth management. Python code examples are provided to support the readers' understanding of the methodologies and applications. The book also includes more than 80 mathematical and programming exercises, with worked solutions available to instructors. As a bridge to research in this emergent field, the final chapter presents the frontiers of machine learning in finance from a researcher's perspective, highlighting how many well-known concepts in statistical physics are likely to emerge as important methodologies for machine learning in finance.

Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes)

Download Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes) PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9811202400
Total Pages : 5053 pages
Book Rating : 4.8/5 (112 download)

DOWNLOAD NOW!


Book Synopsis Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes) by : Cheng Few Lee

Download or read book Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes) written by Cheng Few Lee and published by World Scientific. This book was released on 2020-07-30 with total page 5053 pages. Available in PDF, EPUB and Kindle. Book excerpt: This four-volume handbook covers important concepts and tools used in the fields of financial econometrics, mathematics, statistics, and machine learning. Econometric methods have been applied in asset pricing, corporate finance, international finance, options and futures, risk management, and in stress testing for financial institutions. This handbook discusses a variety of econometric methods, including single equation multiple regression, simultaneous equation regression, and panel data analysis, among others. It also covers statistical distributions, such as the binomial and log normal distributions, in light of their applications to portfolio theory and asset management in addition to their use in research regarding options and futures contracts.In both theory and methodology, we need to rely upon mathematics, which includes linear algebra, geometry, differential equations, Stochastic differential equation (Ito calculus), optimization, constrained optimization, and others. These forms of mathematics have been used to derive capital market line, security market line (capital asset pricing model), option pricing model, portfolio analysis, and others.In recent times, an increased importance has been given to computer technology in financial research. Different computer languages and programming techniques are important tools for empirical research in finance. Hence, simulation, machine learning, big data, and financial payments are explored in this handbook.Led by Distinguished Professor Cheng Few Lee from Rutgers University, this multi-volume work integrates theoretical, methodological, and practical issues based on his years of academic and industry experience.

Applications of Machine Learning

Download Applications of Machine Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811533571
Total Pages : 404 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Applications of Machine Learning by : Prashant Johri

Download or read book Applications of Machine Learning written by Prashant Johri and published by Springer Nature. This book was released on 2020-05-04 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers applications of machine learning in artificial intelligence. The specific topics covered include human language, heterogeneous and streaming data, unmanned systems, neural information processing, marketing and the social sciences, bioinformatics and robotics, etc. It also provides a broad range of techniques that can be successfully applied and adopted in different areas. Accordingly, the book offers an interesting and insightful read for scholars in the areas of computer vision, speech recognition, healthcare, business, marketing, and bioinformatics.

Portfolio Risk Analysis

Download Portfolio Risk Analysis PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400835291
Total Pages : 400 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Portfolio Risk Analysis by : Gregory Connor

Download or read book Portfolio Risk Analysis written by Gregory Connor and published by Princeton University Press. This book was released on 2010-03-15 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Portfolio risk forecasting has been and continues to be an active research field for both academics and practitioners. Almost all institutional investment management firms use quantitative models for their portfolio forecasting, and researchers have explored models' econometric foundations, relative performance, and implications for capital market behavior and asset pricing equilibrium. Portfolio Risk Analysis provides an insightful and thorough overview of financial risk modeling, with an emphasis on practical applications, empirical reality, and historical perspective. Beginning with mean-variance analysis and the capital asset pricing model, the authors give a comprehensive and detailed account of factor models, which are the key to successful risk analysis in every economic climate. Topics range from the relative merits of fundamental, statistical, and macroeconomic models, to GARCH and other time series models, to the properties of the VIX volatility index. The book covers both mainstream and alternative asset classes, and includes in-depth treatments of model integration and evaluation. Credit and liquidity risk and the uncertainty of extreme events are examined in an intuitive and rigorous way. An extensive literature review accompanies each topic. The authors complement basic modeling techniques with references to applications, empirical studies, and advanced mathematical texts. This book is essential for financial practitioners, researchers, scholars, and students who want to understand the nature of financial markets or work toward improving them.

AI-ML for Decision and Risk Analysis

Download AI-ML for Decision and Risk Analysis PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031320131
Total Pages : 443 pages
Book Rating : 4.0/5 (313 download)

DOWNLOAD NOW!


Book Synopsis AI-ML for Decision and Risk Analysis by : Louis Anthony Cox Jr.

Download or read book AI-ML for Decision and Risk Analysis written by Louis Anthony Cox Jr. and published by Springer Nature. This book was released on 2023-07-05 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains and illustrates recent developments and advances in decision-making and risk analysis. It demonstrates how artificial intelligence (AI) and machine learning (ML) have not only benefitted from classical decision analysis concepts such as expected utility maximization but have also contributed to making normative decision theory more useful by forcing it to confront realistic complexities. These include skill acquisition, uncertain and time-consuming implementation of intended actions, open-world uncertainties about what might happen next and what consequences actions can have, and learning to cope effectively with uncertain and changing environments. The result is a more robust and implementable technology for AI/ML-assisted decision-making. The book is intended to inform a wide audience in related applied areas and to provide a fun and stimulating resource for students, researchers, and academics in data science and AI-ML, decision analysis, and other closely linked academic fields. It will also appeal to managers, analysts, decision-makers, and policymakers in financial, health and safety, environmental, business, engineering, and security risk management.