Machine and Deep Learning Techniques for Content Extraction of Satellite Images

Download Machine and Deep Learning Techniques for Content Extraction of Satellite Images PDF Online Free

Author :
Publisher :
ISBN 13 : 9787193905015
Total Pages : 0 pages
Book Rating : 4.9/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Machine and Deep Learning Techniques for Content Extraction of Satellite Images by : Manami Barthakur

Download or read book Machine and Deep Learning Techniques for Content Extraction of Satellite Images written by Manami Barthakur and published by . This book was released on 2023-01-17 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine and deep learning techniques for content extraction of satellite images utilize artificial intelligence and neural networks to analyze and extract information from satellite imagery. These techniques can be used for a variety of applications, such as image classification, object detection, optical character recognition (OCR), and semantic segmentation. Convolutional Neural Networks (CNNs) are commonly used for image classification and object detection tasks. These networks are designed to process and understand images by analyzing the spatial relationship between pixels. They are composed of multiple layers, with each layer analyzing a different level of detail in the image. CNNs are particularly effective at identifying patterns and features in satellite images, such as roads, buildings, and vegetation. Recurrent Neural Networks (RNNs) and Long Short-term Memory (LSTM) networks are particularly useful for tasks that require the analysis of sequential data, like time series data. They are particularly useful in land cover change detection, change detection and time series analysis of satellite images. Semantic segmentation is the process of classifying each pixel in an image to a particular class, and it can be achieved using Fully Convolutional Networks (FCN) and U-Net architecture. This technique is particularly useful for identifying different land cover classes in satellite images, such as urban, agricultural, and natural areas. Generative Adversarial Networks (GANs) are used for creating synthetic images or super resolution of images. These are particularly useful for creating synthetic data for training and testing deep learning models for satellite images. Transfer learning is a technique that allows a pre-trained model to be fine-tuned for a specific task. This can be used to improve the accuracy of image classification and object detection tasks by using a pre-trained model as a starting point. In summary, machine and deep learning techniques for content extraction of satellite images involve using neural networks and computer vision techniques to analyze and extract information from satellite imagery. These techniques can be used for a variety of applications, such as image classification, object detection, and semantic segmentation, and can improve the accuracy and efficiency of extracting information from satellite images. to process and understand images by analyzing the spatial relationship between pixels. They are composed of multiple layers, with each layer analyzing a different level of detail in the image. CNNs are particularly effective at identifying patterns and features in satellite images, such as roads, buildings, and vegetation. Recurrent Neural Networks (RNNs) and Long Short-term Memory (LSTM) networks are particularly useful for tasks that require the analysis of sequential data, like time series data. They are particularly useful in land cover change detection, change detection and time series analysis of satellite images. Semantic segmentation is the process of classifying each pixel in an image to a particular class, and it can be achieved using Fully Convolutional Networks (FCN) and U-Net architecture. This technique is particularly useful for identifying different land cover classes in satellite images, such as urban, agricultural, and natural areas. Generative Adversarial Networks (GANs) are used for creating synthetic images or super resolution of images. These are particularly useful for creating synthetic data for training and testing deep learning models for satellite images. Transfer learning is a technique that allows a pre-trained model to be fine-tuned for a specific task. This can be used to improve the accuracy of image classification and object detection.

Artificial Intelligence Techniques for Satellite Image Analysis

Download Artificial Intelligence Techniques for Satellite Image Analysis PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030241785
Total Pages : 277 pages
Book Rating : 4.0/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence Techniques for Satellite Image Analysis by : D. Jude Hemanth

Download or read book Artificial Intelligence Techniques for Satellite Image Analysis written by D. Jude Hemanth and published by Springer Nature. This book was released on 2019-11-13 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main objective of this book is to provide a common platform for diverse concepts in satellite image processing. In particular it presents the state-of-the-art in Artificial Intelligence (AI) methodologies and shares findings that can be translated into real-time applications to benefit humankind. Interdisciplinary in its scope, the book will be of interest to both newcomers and experienced scientists working in the fields of satellite image processing, geo-engineering, remote sensing and Artificial Intelligence. It can be also used as a supplementary textbook for graduate students in various engineering branches related to image processing.

Fundamentals and Methods of Machine and Deep Learning

Download Fundamentals and Methods of Machine and Deep Learning PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119821886
Total Pages : 480 pages
Book Rating : 4.1/5 (198 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals and Methods of Machine and Deep Learning by : Pradeep Singh

Download or read book Fundamentals and Methods of Machine and Deep Learning written by Pradeep Singh and published by John Wiley & Sons. This book was released on 2022-02-01 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: FUNDAMENTALS AND METHODS OF MACHINE AND DEEP LEARNING The book provides a practical approach by explaining the concepts of machine learning and deep learning algorithms, evaluation of methodology advances, and algorithm demonstrations with applications. Over the past two decades, the field of machine learning and its subfield deep learning have played a main role in software applications development. Also, in recent research studies, they are regarded as one of the disruptive technologies that will transform our future life, business, and the global economy. The recent explosion of digital data in a wide variety of domains, including science, engineering, Internet of Things, biomedical, healthcare, and many business sectors, has declared the era of big data, which cannot be analysed by classical statistics but by the more modern, robust machine learning and deep learning techniques. Since machine learning learns from data rather than by programming hard-coded decision rules, an attempt is being made to use machine learning to make computers that are able to solve problems like human experts in the field. The goal of this book is to present a??practical approach by explaining the concepts of machine learning and deep learning algorithms with applications. Supervised machine learning algorithms, ensemble machine learning algorithms, feature selection, deep learning techniques, and their applications are discussed. Also included in the eighteen chapters is unique information which provides a clear understanding of concepts by using algorithms and case studies illustrated with applications of machine learning and deep learning in different domains, including disease prediction, software defect prediction, online television analysis, medical image processing, etc. Each of the chapters briefly described below provides both a chosen approach and its implementation. Audience Researchers and engineers in artificial intelligence, computer scientists as well as software developers.

Polarimetric Radar Imaging

Download Polarimetric Radar Imaging PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420054988
Total Pages : 422 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Polarimetric Radar Imaging by : Jong-Sen Lee

Download or read book Polarimetric Radar Imaging written by Jong-Sen Lee and published by CRC Press. This book was released on 2017-12-19 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: The recent launches of three fully polarimetric synthetic aperture radar (PolSAR) satellites have shown that polarimetric radar imaging can provide abundant data on the Earth’s environment, such as biomass and forest height estimation, snow cover mapping, glacier monitoring, and damage assessment. Written by two of the most recognized leaders in this field, Polarimetric Radar Imaging: From Basics to Applications presents polarimetric radar imaging and processing techniques and shows how to develop remote sensing applications using PolSAR imaging radar. The book provides a substantial and balanced introduction to the basic theory and advanced concepts of polarimetric scattering mechanisms, speckle statistics and speckle filtering, polarimetric information analysis and extraction techniques, and applications typical to radar polarimetric remote sensing. It explains the importance of wave polarization theory and the speckle phenomenon in the information retrieval problem of microwave imaging and inverse scattering. The authors demonstrate how to devise intelligent information extraction algorithms for remote sensing applications. They also describe more advanced polarimetric analysis techniques for polarimetric target decompositions, polarization orientation effects, polarimetric scattering modeling, speckle filtering, terrain and forest classification, manmade target analysis, and PolSAR interferometry. With sample PolSAR data sets and software available for download, this self-contained, hands-on book encourages you to analyze space-borne and airborne PolSAR and polarimetric interferometric SAR (Pol-InSAR) data and then develop applications using this data.

Deep Learning for the Earth Sciences

Download Deep Learning for the Earth Sciences PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119646162
Total Pages : 436 pages
Book Rating : 4.1/5 (196 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning for the Earth Sciences by : Gustau Camps-Valls

Download or read book Deep Learning for the Earth Sciences written by Gustau Camps-Valls and published by John Wiley & Sons. This book was released on 2021-08-18 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: DEEP LEARNING FOR THE EARTH SCIENCES Explore this insightful treatment of deep learning in the field of earth sciences, from four leading voices Deep learning is a fundamental technique in modern Artificial Intelligence and is being applied to disciplines across the scientific spectrum; earth science is no exception. Yet, the link between deep learning and Earth sciences has only recently entered academic curricula and thus has not yet proliferated. Deep Learning for the Earth Sciences delivers a unique perspective and treatment of the concepts, skills, and practices necessary to quickly become familiar with the application of deep learning techniques to the Earth sciences. The book prepares readers to be ready to use the technologies and principles described in their own research. The distinguished editors have also included resources that explain and provide new ideas and recommendations for new research especially useful to those involved in advanced research education or those seeking PhD thesis orientations. Readers will also benefit from the inclusion of: An introduction to deep learning for classification purposes, including advances in image segmentation and encoding priors, anomaly detection and target detection, and domain adaptation An exploration of learning representations and unsupervised deep learning, including deep learning image fusion, image retrieval, and matching and co-registration Practical discussions of regression, fitting, parameter retrieval, forecasting and interpolation An examination of physics-aware deep learning models, including emulation of complex codes and model parametrizations Perfect for PhD students and researchers in the fields of geosciences, image processing, remote sensing, electrical engineering and computer science, and machine learning, Deep Learning for the Earth Sciences will also earn a place in the libraries of machine learning and pattern recognition researchers, engineers, and scientists.

Proceedings of the International Conference on Paradigms of Computing, Communication and Data Sciences

Download Proceedings of the International Conference on Paradigms of Computing, Communication and Data Sciences PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811575339
Total Pages : 1001 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Proceedings of the International Conference on Paradigms of Computing, Communication and Data Sciences by : Mayank Dave

Download or read book Proceedings of the International Conference on Paradigms of Computing, Communication and Data Sciences written by Mayank Dave and published by Springer Nature. This book was released on 2021-02-19 with total page 1001 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents best selected papers presented at the International Conference on Paradigms of Computing, Communication and Data Sciences (PCCDS 2020), organized by National Institute of Technology, Kurukshetra, India, during 1–3 May 2020. It discusses high-quality and cutting-edge research in the areas of advanced computing, communications and data science techniques. The book is a collection of latest research articles in computation algorithm, communication and data sciences, intertwined with each other for efficiency.

Hyperspectral Image Analysis

Download Hyperspectral Image Analysis PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030386171
Total Pages : 464 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Hyperspectral Image Analysis by : Saurabh Prasad

Download or read book Hyperspectral Image Analysis written by Saurabh Prasad and published by Springer Nature. This book was released on 2020-04-27 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas of image analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful.

Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images

Download Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images PDF Online Free

Author :
Publisher : MDPI
ISBN 13 : 3036509860
Total Pages : 438 pages
Book Rating : 4.0/5 (365 download)

DOWNLOAD NOW!


Book Synopsis Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images by : Yakoub Bazi

Download or read book Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images written by Yakoub Bazi and published by MDPI. This book was released on 2021-06-15 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: The rapid growth of the world population has resulted in an exponential expansion of both urban and agricultural areas. Identifying and managing such earthly changes in an automatic way poses a worth-addressing challenge, in which remote sensing technology can have a fundamental role to answer—at least partially—such demands. The recent advent of cutting-edge processing facilities has fostered the adoption of deep learning architectures owing to their generalization capabilities. In this respect, it seems evident that the pace of deep learning in the remote sensing domain remains somewhat lagging behind that of its computer vision counterpart. This is due to the scarce availability of ground truth information in comparison with other computer vision domains. In this book, we aim at advancing the state of the art in linking deep learning methodologies with remote sensing image processing by collecting 20 contributions from different worldwide scientists and laboratories. The book presents a wide range of methodological advancements in the deep learning field that come with different applications in the remote sensing landscape such as wildfire and postdisaster damage detection, urban forest mapping, vine disease and pavement marking detection, desert road mapping, road and building outline extraction, vehicle and vessel detection, water identification, and text-to-image matching.

Proceedings of the 2nd International Conference on Big Data, IoT and Machine Learning

Download Proceedings of the 2nd International Conference on Big Data, IoT and Machine Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 981998937X
Total Pages : 1053 pages
Book Rating : 4.8/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Proceedings of the 2nd International Conference on Big Data, IoT and Machine Learning by : Mohammad Shamsul Arefin

Download or read book Proceedings of the 2nd International Conference on Big Data, IoT and Machine Learning written by Mohammad Shamsul Arefin and published by Springer Nature. This book was released on with total page 1053 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Remote Sensing Imagery

Download Remote Sensing Imagery PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118898923
Total Pages : 277 pages
Book Rating : 4.1/5 (188 download)

DOWNLOAD NOW!


Book Synopsis Remote Sensing Imagery by : Florence Tupin

Download or read book Remote Sensing Imagery written by Florence Tupin and published by John Wiley & Sons. This book was released on 2014-02-19 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dedicated to remote sensing images, from their acquisition to their use in various applications, this book covers the global lifecycle of images, including sensors and acquisition systems, applications such as movement monitoring or data assimilation, and image and data processing. It is organized in three main parts. The first part presents technological information about remote sensing (choice of satellite orbit and sensors) and elements of physics related to sensing (optics and microwave propagation). The second part presents image processing algorithms and their specificities for radar or optical, multi and hyper-spectral images. The final part is devoted to applications: change detection and analysis of time series, elevation measurement, displacement measurement and data assimilation. Offering a comprehensive survey of the domain of remote sensing imagery with a multi-disciplinary approach, this book is suitable for graduate students and engineers, with backgrounds either in computer science and applied math (signal and image processing) or geo-physics. About the Authors Florence Tupin is Professor at Telecom ParisTech, France. Her research interests include remote sensing imagery, image analysis and interpretation, three-dimensional reconstruction, and synthetic aperture radar, especially for urban remote sensing applications. Jordi Inglada works at the Centre National d’Études Spatiales (French Space Agency), Toulouse, France, in the field of remote sensing image processing at the CESBIO laboratory. He is in charge of the development of image processing algorithms for the operational exploitation of Earth observation images, mainly in the field of multi-temporal image analysis for land use and cover change. Jean-Marie Nicolas is Professor at Telecom ParisTech in the Signal and Imaging department. His research interests include the modeling and processing of synthetic aperture radar images.

Deep Learning with Keras

Download Deep Learning with Keras PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1787129039
Total Pages : 310 pages
Book Rating : 4.7/5 (871 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning with Keras by : Antonio Gulli

Download or read book Deep Learning with Keras written by Antonio Gulli and published by Packt Publishing Ltd. This book was released on 2017-04-26 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get to grips with the basics of Keras to implement fast and efficient deep-learning models About This Book Implement various deep-learning algorithms in Keras and see how deep-learning can be used in games See how various deep-learning models and practical use-cases can be implemented using Keras A practical, hands-on guide with real-world examples to give you a strong foundation in Keras Who This Book Is For If you are a data scientist with experience in machine learning or an AI programmer with some exposure to neural networks, you will find this book a useful entry point to deep-learning with Keras. A knowledge of Python is required for this book. What You Will Learn Optimize step-by-step functions on a large neural network using the Backpropagation Algorithm Fine-tune a neural network to improve the quality of results Use deep learning for image and audio processing Use Recursive Neural Tensor Networks (RNTNs) to outperform standard word embedding in special cases Identify problems for which Recurrent Neural Network (RNN) solutions are suitable Explore the process required to implement Autoencoders Evolve a deep neural network using reinforcement learning In Detail This book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing with recognition of hand written digit images, classification of images into different categories, and advanced objects recognition with related image annotations. An example of identification of salient points for face detection is also provided. Next you will be introduced to Recurrent Networks, which are optimized for processing sequence data such as text, audio or time series. Following that, you will learn about unsupervised learning algorithms such as Autoencoders and the very popular Generative Adversarial Networks (GAN). You will also explore non-traditional uses of neural networks as Style Transfer. Finally, you will look at Reinforcement Learning and its application to AI game playing, another popular direction of research and application of neural networks. Style and approach This book is an easy-to-follow guide full of examples and real-world applications to help you gain an in-depth understanding of Keras. This book will showcase more than twenty working Deep Neural Networks coded in Python using Keras.

Deep Learning Techniques for Automation and Industrial Applications

Download Deep Learning Techniques for Automation and Industrial Applications PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1394234252
Total Pages : 237 pages
Book Rating : 4.3/5 (942 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning Techniques for Automation and Industrial Applications by : Pramod Singh Rathore

Download or read book Deep Learning Techniques for Automation and Industrial Applications written by Pramod Singh Rathore and published by John Wiley & Sons. This book was released on 2024-06-24 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides state-of-the-art approaches to deep learning in areas of detection and prediction, as well as future framework development, building service systems and analytical aspects in which artificial neural networks, fuzzy logic, genetic algorithms, and hybrid mechanisms are used. Deep learning algorithms and techniques are found to be useful in various areas, such as automatic machine translation, automatic handwriting generation, visual recognition, fraud detection, and detecting developmental delays in children. “Deep Learning Techniques for Automation and Industrial Applications” presents a concise introduction to the recent advances in this field of artificial intelligence (AI). The broad-ranging discussion covers the algorithms and applications in AI, reasoning, machine learning, neural networks, reinforcement learning, and their applications in various domains like agriculture, manufacturing, and healthcare. Applying deep learning techniques or algorithms successfully in these areas requires a concerted effort, fostering integrative research between experts from diverse disciplines from data science to visualization. This book provides state-of-the-art approaches to deep learning covering detection and prediction, as well as future framework development, building service systems, and analytical aspects. For all these topics, various approaches to deep learning, such as artificial neural networks, fuzzy logic, genetic algorithms, and hybrid mechanisms, are explained. Audience The book will be useful to researchers and industry engineers working in information technology, data analytics network security, and manufacturing. Graduate and upper-level undergraduate students in advanced modeling and simulation courses will find this book very useful.

Satellite Image Analysis: Clustering and Classification

Download Satellite Image Analysis: Clustering and Classification PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811364249
Total Pages : 110 pages
Book Rating : 4.8/5 (113 download)

DOWNLOAD NOW!


Book Synopsis Satellite Image Analysis: Clustering and Classification by : Surekha Borra

Download or read book Satellite Image Analysis: Clustering and Classification written by Surekha Borra and published by Springer. This book was released on 2019-02-08 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thanks to recent advances in sensors, communication and satellite technology, data storage, processing and networking capabilities, satellite image acquisition and mining are now on the rise. In turn, satellite images play a vital role in providing essential geographical information. Highly accurate automatic classification and decision support systems can facilitate the efforts of data analysts, reduce human error, and allow the rapid and rigorous analysis of land use and land cover information. Integrating Machine Learning (ML) technology with the human visual psychometric can help meet geologists’ demands for more efficient and higher-quality classification in real time. This book introduces readers to key concepts, methods and models for satellite image analysis; highlights state-of-the-art classification and clustering techniques; discusses recent developments and remaining challenges; and addresses various applications, making it a valuable asset for engineers, data analysts and researchers in the fields of geographic information systems and remote sensing engineering.

Neural Networks: Tricks of the Trade

Download Neural Networks: Tricks of the Trade PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642352898
Total Pages : 753 pages
Book Rating : 4.6/5 (423 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks: Tricks of the Trade by : Grégoire Montavon

Download or read book Neural Networks: Tricks of the Trade written by Grégoire Montavon and published by Springer. This book was released on 2012-11-14 with total page 753 pages. Available in PDF, EPUB and Kindle. Book excerpt: The twenty last years have been marked by an increase in available data and computing power. In parallel to this trend, the focus of neural network research and the practice of training neural networks has undergone a number of important changes, for example, use of deep learning machines. The second edition of the book augments the first edition with more tricks, which have resulted from 14 years of theory and experimentation by some of the world's most prominent neural network researchers. These tricks can make a substantial difference (in terms of speed, ease of implementation, and accuracy) when it comes to putting algorithms to work on real problems.

Machine Learning for Algorithmic Trading

Download Machine Learning for Algorithmic Trading PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1839216786
Total Pages : 822 pages
Book Rating : 4.8/5 (392 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Algorithmic Trading by : Stefan Jansen

Download or read book Machine Learning for Algorithmic Trading written by Stefan Jansen and published by Packt Publishing Ltd. This book was released on 2020-07-31 with total page 822 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.

Image Registration for Remote Sensing

Download Image Registration for Remote Sensing PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139494376
Total Pages : 515 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Image Registration for Remote Sensing by : Jacqueline Le Moigne

Download or read book Image Registration for Remote Sensing written by Jacqueline Le Moigne and published by Cambridge University Press. This book was released on 2011-03-24 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a summary of current research in the application of image registration to satellite imagery. Presenting algorithms for creating mosaics and tracking changes on the planet's surface over time, it is an indispensable resource for researchers and advanced students in Earth and space science, and image processing.

Privacy-Preserving Deep Learning

Download Privacy-Preserving Deep Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811637644
Total Pages : 81 pages
Book Rating : 4.8/5 (116 download)

DOWNLOAD NOW!


Book Synopsis Privacy-Preserving Deep Learning by : Kwangjo Kim

Download or read book Privacy-Preserving Deep Learning written by Kwangjo Kim and published by Springer Nature. This book was released on 2021-07-22 with total page 81 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the state-of-the-art in privacy-preserving deep learning (PPDL), especially as a tool for machine learning as a service (MLaaS), which serves as an enabling technology by combining classical privacy-preserving and cryptographic protocols with deep learning. Google and Microsoft announced a major investment in PPDL in early 2019. This was followed by Google’s infamous announcement of “Private Join and Compute,” an open source PPDL tools based on secure multi-party computation (secure MPC) and homomorphic encryption (HE) in June of that year. One of the challenging issues concerning PPDL is selecting its practical applicability despite the gap between the theory and practice. In order to solve this problem, it has recently been proposed that in addition to classical privacy-preserving methods (HE, secure MPC, differential privacy, secure enclaves), new federated or split learning for PPDL should also be applied. This concept involves building a cloud framework that enables collaborative learning while keeping training data on client devices. This successfully preserves privacy and while allowing the framework to be implemented in the real world. This book provides fundamental insights into privacy-preserving and deep learning, offering a comprehensive overview of the state-of-the-art in PPDL methods. It discusses practical issues, and leveraging federated or split-learning-based PPDL. Covering the fundamental theory of PPDL, the pros and cons of current PPDL methods, and addressing the gap between theory and practice in the most recent approaches, it is a valuable reference resource for a general audience, undergraduate and graduate students, as well as practitioners interested learning about PPDL from the scratch, and researchers wanting to explore PPDL for their applications.