The Navier-Stokes Equations

Download The Navier-Stokes Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3034805519
Total Pages : 376 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis The Navier-Stokes Equations by : Hermann Sohr

Download or read book The Navier-Stokes Equations written by Hermann Sohr and published by Springer Science & Business Media. This book was released on 2012-12-13 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary objective of this monograph is to develop an elementary and se- containedapproachtothemathematicaltheoryofaviscousincompressible?uid n in a domain ? of the Euclidean spaceR , described by the equations of Navier- Stokes. The book is mainly directed to students familiar with basic functional analytic tools in Hilbert and Banach spaces. However, for readers’ convenience, in the ?rst two chapters we collect, without proof some fundamental properties of Sobolev spaces, distributions, operators, etc. Another important objective is to formulate the theory for a completely general domain ?. In particular, the theory applies to arbitrary unbounded, non-smooth domains. For this reason, in the nonlinear case, we have to restrict ourselves to space dimensions n=2,3 that are also most signi?cant from the physical point of view. For mathematical generality, we will develop the l- earized theory for all n? 2. Although the functional-analytic approach developed here is, in principle, known to specialists, its systematic treatment is not available, and even the diverseaspectsavailablearespreadoutintheliterature.However,theliterature is very wide, and I did not even try to include a full list of related papers, also because this could be confusing for the student. In this regard, I would like to apologize for not quoting all the works that, directly or indirectly, have inspired this monograph.

Local Function Spaces, Heat and Navier-Stokes Equations

Download Local Function Spaces, Heat and Navier-Stokes Equations PDF Online Free

Author :
Publisher : Amer Mathematical Society
ISBN 13 : 9783037191231
Total Pages : 232 pages
Book Rating : 4.1/5 (912 download)

DOWNLOAD NOW!


Book Synopsis Local Function Spaces, Heat and Navier-Stokes Equations by : Hans Triebel

Download or read book Local Function Spaces, Heat and Navier-Stokes Equations written by Hans Triebel and published by Amer Mathematical Society. This book was released on 2013 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book a new approach is presented to exhibit relations between Sobolev spaces, Besov spaces, and Holder-Zygmund spaces on the one hand and Morrey-Campanato spaces on the other. Morrey-Campanato spaces extend the notion of functions of bounded mean oscillation. These spaces play an important role in the theory of linear and nonlinear PDEs. Chapters 1-3 deal with local smoothness spaces in Euclidean $n$-space based on the Morrey-Campanato refinement of the Lebesgue spaces. The presented approach relies on wavelet decompositions. This is applied in Chapter 4 to Gagliardo-Nirenberg inequalities. Chapter 5 deals with linear and nonlinear heat equations in global and local function spaces. The obtained assertions about function spaces and nonlinear heat equations are used in Chapter 6 to study Navier-Stokes equations. The book is addressed to graduate students and mathematicians with a working knowledge of basic elements of (global) function spaces and an interest in applications to nonlinear PDEs with heat and Navier-Stokes equations as prototypes.

Theory of Function Spaces IV

Download Theory of Function Spaces IV PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030358917
Total Pages : 167 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Theory of Function Spaces IV by : Hans Triebel

Download or read book Theory of Function Spaces IV written by Hans Triebel and published by Springer Nature. This book was released on 2020-01-23 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the continuation of the "Theory of Function Spaces" trilogy, published by the same author in this series and now part of classic literature in the area of function spaces. It can be regarded as a supplement to these volumes and as an accompanying book to the textbook by D.D. Haroske and the author "Distributions, Sobolev spaces, elliptic equations".

The Navier-Stokes Problem in the 21st Century

Download The Navier-Stokes Problem in the 21st Century PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 146656623X
Total Pages : 732 pages
Book Rating : 4.4/5 (665 download)

DOWNLOAD NOW!


Book Synopsis The Navier-Stokes Problem in the 21st Century by : Pierre Gilles Lemarie-Rieusset

Download or read book The Navier-Stokes Problem in the 21st Century written by Pierre Gilles Lemarie-Rieusset and published by CRC Press. This book was released on 2016-04-06 with total page 732 pages. Available in PDF, EPUB and Kindle. Book excerpt: Up-to-Date Coverage of the Navier–Stokes Equation from an Expert in Harmonic Analysis The complete resolution of the Navier–Stokes equation—one of the Clay Millennium Prize Problems—remains an important open challenge in partial differential equations (PDEs) research despite substantial studies on turbulence and three-dimensional fluids. The Navier–Stokes Problem in the 21st Century provides a self-contained guide to the role of harmonic analysis in the PDEs of fluid mechanics. The book focuses on incompressible deterministic Navier–Stokes equations in the case of a fluid filling the whole space. It explores the meaning of the equations, open problems, and recent progress. It includes classical results on local existence and studies criterion for regularity or uniqueness of solutions. The book also incorporates historical references to the (pre)history of the equations as well as recent references that highlight active mathematical research in the field.

Hybrid Function Spaces, Heat and Navier-Stokes Equations

Download Hybrid Function Spaces, Heat and Navier-Stokes Equations PDF Online Free

Author :
Publisher : Erich Schmidt Verlag GmbH & Co. KG
ISBN 13 : 9783037191507
Total Pages : 200 pages
Book Rating : 4.1/5 (915 download)

DOWNLOAD NOW!


Book Synopsis Hybrid Function Spaces, Heat and Navier-Stokes Equations by : Hans Triebel

Download or read book Hybrid Function Spaces, Heat and Navier-Stokes Equations written by Hans Triebel and published by Erich Schmidt Verlag GmbH & Co. KG. This book was released on 2014 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the continuation of Local Function Spaces, Heat and Navier-Stokes Equations (EMS Tracts in Mathematics, volume 20, 2013) by the author. A new approach is presented to exhibit relations between Sobolev spaces, Besov spaces, and Holder-Zygmund spaces on the one hand and Morrey-Campanato spaces on the other. Morrey-Campanato spaces extend the notion of functions of bounded mean oscillation. These spaces play a crucial role in the theory of linear and nonlinear PDEs. Chapter 1 (Introduction) describes the main motivations and intentions of this book. Chapter 2 is a self-contained introduction to Morrey spaces. Chapter 3 deals with hybrid smoothness spaces (which are between local and global spaces) in Euclidean $n$-space based on the Morrey-Campanato refinement of the Lebesgue spaces. The presented approach, which relies on wavelet decompositions, is applied in Chapter 4 to linear and nonlinear heat equations in global and hybrid spaces. The obtained assertions about function spaces and nonlinear heat equations are used in Chapters 5 and 6 to study Navier-Stokes equations in hybrid and global spaces. This book is addressed to graduate students and mathematicians who have a working knowledge of basic elements of (global) function spaces and who are interested in applications to nonlinear PDEs with heat and Navier-Stokes equations as prototypes.

Analysis in Banach Spaces

Download Analysis in Banach Spaces PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031465989
Total Pages : 839 pages
Book Rating : 4.0/5 (314 download)

DOWNLOAD NOW!


Book Synopsis Analysis in Banach Spaces by : Tuomas Hytönen

Download or read book Analysis in Banach Spaces written by Tuomas Hytönen and published by Springer Nature. This book was released on 2024-01-08 with total page 839 pages. Available in PDF, EPUB and Kindle. Book excerpt: This third volume of Analysis in Banach Spaces offers a systematic treatment of Banach space-valued singular integrals, Fourier transforms, and function spaces. It further develops and ramifies the theory of functional calculus from Volume II and describes applications of these new notions and tools to the problem of maximal regularity of evolution equations. The exposition provides a unified treatment of a large body of results, much of which has previously only been available in the form of research papers. Some of the more classical topics are presented in a novel way using modern techniques amenable to a vector-valued treatment. Thanks to its accessible style with complete and detailed proofs, this book will be an invaluable reference for researchers interested in functional analysis, harmonic analysis, and the operator-theoretic approach to deterministic and stochastic evolution equations.

Function Spaces of Logarithmic Smoothness: Embeddings and Characterizations

Download Function Spaces of Logarithmic Smoothness: Embeddings and Characterizations PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470455382
Total Pages : 180 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Function Spaces of Logarithmic Smoothness: Embeddings and Characterizations by : Óscar Domínguez

Download or read book Function Spaces of Logarithmic Smoothness: Embeddings and Characterizations written by Óscar Domínguez and published by American Mathematical Society. This book was released on 2023-02-13 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: View the abstract.

Functional Analysis, Harmonic Analysis, and Image Processing

Download Functional Analysis, Harmonic Analysis, and Image Processing PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470428369
Total Pages : 422 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Functional Analysis, Harmonic Analysis, and Image Processing by : Michael Cwikel

Download or read book Functional Analysis, Harmonic Analysis, and Image Processing written by Michael Cwikel and published by American Mathematical Soc.. This book was released on 2017-07-26 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is dedicated to the memory of Björn Jawerth. It contains original research contributions and surveys in several of the areas of mathematics to which Björn made important contributions. Those areas include harmonic analysis, image processing, and functional analysis, which are of course interrelated in many significant and productive ways. Among the contributors are some of the world's leading experts in these areas. With its combination of research papers and surveys, this book may become an important reference and research tool. This book should be of interest to advanced graduate students and professional researchers in the areas of functional analysis, harmonic analysis, image processing, and approximation theory. It combines articles presenting new research with insightful surveys written by foremost experts.

Theory of Besov Spaces

Download Theory of Besov Spaces PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811308365
Total Pages : 964 pages
Book Rating : 4.8/5 (113 download)

DOWNLOAD NOW!


Book Synopsis Theory of Besov Spaces by : Yoshihiro Sawano

Download or read book Theory of Besov Spaces written by Yoshihiro Sawano and published by Springer. This book was released on 2018-11-04 with total page 964 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a self-contained textbook of the theory of Besov spaces and Triebel–Lizorkin spaces oriented toward applications to partial differential equations and problems of harmonic analysis. These include a priori estimates of elliptic differential equations, the T1 theorem, pseudo-differential operators, the generator of semi-group and spaces on domains, and the Kato problem. Various function spaces are introduced to overcome the shortcomings of Besov spaces and Triebel–Lizorkin spaces as well. The only prior knowledge required of readers is familiarity with integration theory and some elementary functional analysis.Illustrations are included to show the complicated way in which spaces are defined. Owing to that complexity, many definitions are required. The necessary terminology is provided at the outset, and the theory of distributions, L^p spaces, the Hardy–Littlewood maximal operator, and the singular integral operators are called upon. One of the highlights is that the proof of the Sobolev embedding theorem is extremely simple. There are two types for each function space: a homogeneous one and an inhomogeneous one. The theory of function spaces, which readers usually learn in a standard course, can be readily applied to the inhomogeneous one. However, that theory is not sufficient for a homogeneous space; it needs to be reinforced with some knowledge of the theory of distributions. This topic, however subtle, is also covered within this volume. Additionally, related function spaces—Hardy spaces, bounded mean oscillation spaces, and Hölder continuous spaces—are defined and discussed, and it is shown that they are special cases of Besov spaces and Triebel–Lizorkin spaces.

Mathematics for Nonlinear Phenomena — Analysis and Computation

Download Mathematics for Nonlinear Phenomena — Analysis and Computation PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319667645
Total Pages : 335 pages
Book Rating : 4.3/5 (196 download)

DOWNLOAD NOW!


Book Synopsis Mathematics for Nonlinear Phenomena — Analysis and Computation by : Yasunori Maekawa

Download or read book Mathematics for Nonlinear Phenomena — Analysis and Computation written by Yasunori Maekawa and published by Springer. This book was released on 2017-11-01 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume covers some of the most seminal research in the areas of mathematical analysis and numerical computation for nonlinear phenomena. Collected from the international conference held in honor of Professor Yoshikazu Giga’s 60th birthday, the featured research papers and survey articles discuss partial differential equations related to fluid mechanics, electromagnetism, surface diffusion, and evolving interfaces. Specific focus is placed on topics such as the solvability of the Navier-Stokes equations and the regularity, stability, and symmetry of their solutions, analysis of a living fluid, stochastic effects and numerics for Maxwell’s equations, nonlinear heat equations in critical spaces, viscosity solutions describing various kinds of interfaces, numerics for evolving interfaces, and a hyperbolic obstacle problem. Also included in this volume are an introduction of Yoshikazu Giga’s extensive academic career and a long list of his published work. Students and researchers in mathematical analysis and computation will find interest in this volume on theoretical study for nonlinear phenomena.

Stochastic Equations in Infinite Dimensions

Download Stochastic Equations in Infinite Dimensions PDF Online Free

Author :
Publisher :
ISBN 13 : 9781306148061
Total Pages : pages
Book Rating : 4.1/5 (48 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Equations in Infinite Dimensions by : Da Prato Guiseppe

Download or read book Stochastic Equations in Infinite Dimensions written by Da Prato Guiseppe and published by . This book was released on 2013-11-21 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to give a systematic and self-contained presentation of basic results on stochastic evolution equations in infinite dimensional, typically Hilbert and Banach, spaces. These are a generalization of stochastic differential equations as introduced by Ito and Gikham that occur, for instance, when describing random phenomena that crop up in science and engineering, as well as in the study of differential equations. The book is divided into three parts. In the first the authors give a self-contained exposition of the basic properties of probability measure on separable Banach and Hilbert spaces, as required later; they assume a reasonable background in probability theory and finite dimensional stochastic processes. The second part is devoted to the existence and uniqueness of solutions of a general stochastic evolution equation, and the third concerns the qualitative properties of those solutions. Appendices gather together background results from analysis that are otherwise hard to find under one roof. The book ends with a comprehensive bibliography that will contribute to the book's value for all working in stochastic differential equations."

Recent developments in the Navier-Stokes problem

Download Recent developments in the Navier-Stokes problem PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9781420035674
Total Pages : 412 pages
Book Rating : 4.0/5 (356 download)

DOWNLOAD NOW!


Book Synopsis Recent developments in the Navier-Stokes problem by : Pierre Gilles Lemarie-Rieusset

Download or read book Recent developments in the Navier-Stokes problem written by Pierre Gilles Lemarie-Rieusset and published by CRC Press. This book was released on 2002-04-26 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Navier-Stokes equations: fascinating, fundamentally important, and challenging,. Although many questions remain open, progress has been made in recent years. The regularity criterion of Caffarelli, Kohn, and Nirenberg led to many new results on existence and non-existence of solutions, and the very active search for mild solutions in the 1990's culminated in the theorem of Koch and Tataru that, in some ways, provides a definitive answer. Recent Developments in the Navier-Stokes Problem brings these and other advances together in a self-contained exposition presented from the perspective of real harmonic analysis. The author first builds a careful foundation in real harmonic analysis, introducing all the material needed for his later discussions. He then studies the Navier-Stokes equations on the whole space, exploring previously scattered results such as the decay of solutions in space and in time, uniqueness, self-similar solutions, the decay of Lebesgue or Besov norms of solutions, and the existence of solutions for a uniformly locally square integrable initial value. Many of the proofs and statements are original and, to the extent possible, presented in the context of real harmonic analysis. Although the existence, regularity, and uniqueness of solutions to the Navier-Stokes equations continue to be a challenge, this book is a welcome opportunity for mathematicians and physicists alike to explore the problem's intricacies from a new and enlightening perspective.

Geometric Properties for Parabolic and Elliptic PDE's

Download Geometric Properties for Parabolic and Elliptic PDE's PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030733637
Total Pages : 303 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Geometric Properties for Parabolic and Elliptic PDE's by : Vincenzo Ferone

Download or read book Geometric Properties for Parabolic and Elliptic PDE's written by Vincenzo Ferone and published by Springer Nature. This book was released on 2021-06-12 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the contributions resulting from the 6th Italian-Japanese workshop on Geometric Properties for Parabolic and Elliptic PDEs, which was held in Cortona (Italy) during the week of May 20–24, 2019. This book will be of great interest for the mathematical community and in particular for researchers studying parabolic and elliptic PDEs. It covers many different fields of current research as follows: convexity of solutions to PDEs, qualitative properties of solutions to parabolic equations, overdetermined problems, inverse problems, Brunn-Minkowski inequalities, Sobolev inequalities, and isoperimetric inequalities.

New Trends in Microlocal Analysis

Download New Trends in Microlocal Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 4431684131
Total Pages : 237 pages
Book Rating : 4.4/5 (316 download)

DOWNLOAD NOW!


Book Synopsis New Trends in Microlocal Analysis by : J.-M. Bony

Download or read book New Trends in Microlocal Analysis written by J.-M. Bony and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microlocal analysis began around 1970 when Mikio Sato, along with coauthors Masaki Kashiwara and Takahiro Kawai, wrote a decisive article on the structure of pseudodifferential equations, thus laying the foundation of D-modules and the singular spectrums of hyperfunctions. The key idea is the analysis of problems on the phase space, i.e., the cotangent bundle of the base space. Microlocal analysis is an active area of mathematical research that has been applied to many fields such as real and complex analysis, representation theory, topology, number theory, and mathematical physics. This volume contains the presentations given at a seminar jointly organized by the Japan Society for the Promotion of Science and Centre National des Recherches Scientifiques entitled New Trends in Microlocal Analysis. The book is divided into three parts: partial differential equations and mathematical analysis, mathematical physics, and algebraic analysis - D-modules and sheave theory. The large variety of new research that is covered will prove invaluable to students and researchers alike.

Dynamics of Viscous Compressible Fluids

Download Dynamics of Viscous Compressible Fluids PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 9780198528388
Total Pages : 228 pages
Book Rating : 4.5/5 (283 download)

DOWNLOAD NOW!


Book Synopsis Dynamics of Viscous Compressible Fluids by : Eduard Feireisl

Download or read book Dynamics of Viscous Compressible Fluids written by Eduard Feireisl and published by Oxford University Press. This book was released on 2004 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text develops the ideas and concepts of the mathematical theory of viscous, compressible and heat conducting fluids. The material is by no means intended to be the last word on the subject but rather to indicate possible directions of future research.

Initial-boundary Value Problems and the Navier-Stokes Equations

Download Initial-boundary Value Problems and the Navier-Stokes Equations PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 0898719135
Total Pages : 408 pages
Book Rating : 4.8/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Initial-boundary Value Problems and the Navier-Stokes Equations by : Heinz-Otto Kreiss

Download or read book Initial-boundary Value Problems and the Navier-Stokes Equations written by Heinz-Otto Kreiss and published by SIAM. This book was released on 1989-01-01 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation This book provides an introduction to the vast subject of initial and initial-boundary value problems for PDEs, with an emphasis on applications to parabolic and hyperbolic systems. The Navier-Stokes equations for compressible and incompressible flows are taken as an example to illustrate the results. Researchers and graduate students in applied mathematics and engineering will find Initial-Boundary Value Problems and the Navier-Stokes Equations invaluable. The subjects addressed in the book, such as the well-posedness of initial-boundary value problems, are of frequent interest when PDEs are used in modeling or when they are solved numerically. The reader will learn what well-posedness or ill-posedness means and how it can be demonstrated for concrete problems. There are many new results, in particular on the Navier-Stokes equations. The direct approach to the subject still gives a valuable introduction to an important area of applied analysis.

Morrey Spaces

Download Morrey Spaces PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000064050
Total Pages : 429 pages
Book Rating : 4.0/5 ( download)

DOWNLOAD NOW!


Book Synopsis Morrey Spaces by : Yoshihiro Sawano

Download or read book Morrey Spaces written by Yoshihiro Sawano and published by CRC Press. This book was released on 2020-09-16 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: Morrey spaces were introduced by Charles Morrey to investigate the local behaviour of solutions to second order elliptic partial differential equations. The technique is very useful in many areas in mathematics, in particular in harmonic analysis, potential theory, partial differential equations and mathematical physics. Across two volumes, the authors of Morrey Spaces: Introduction and Applications to Integral Operators and PDE’s discuss the current state of art and perspectives of developments of this theory of Morrey spaces, with the emphasis in Volume II focused mainly generalizations and interpolation of Morrey spaces. Features Provides a ‘from-scratch’ overview of the topic readable by anyone with an understanding of integration theory Suitable for graduate students, masters course students, and researchers in PDE's or Geometry Replete with exercises and examples to aid the reader’s understanding