Probability Measures on Locally Compact Groups

Download Probability Measures on Locally Compact Groups PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9783540083320
Total Pages : 552 pages
Book Rating : 4.0/5 (833 download)

DOWNLOAD NOW!


Book Synopsis Probability Measures on Locally Compact Groups by : H. Heyer

Download or read book Probability Measures on Locally Compact Groups written by H. Heyer and published by Springer. This book was released on 1977-12-29 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability measures on algebraic-topological structures such as topological semi groups, groups, and vector spaces have become of increasing importance in recent years for probabilists interested in the structural aspects of the theory as well as for analysts aiming at applications within the scope of probability theory. In order to obtain a natural framework for a first systematic presentation of the most developed part of the work done in the field we restrict ourselves to prob ability measures on locally compact groups. At the same time we stress the non Abelian aspect. Thus the book is concerned with a set of problems which can be regarded either from the probabilistic or from the harmonic-analytic point of view. In fact, it seems to be the synthesis of these two viewpoints, the initial inspiration coming from probability and the refined techniques from harmonic analysis which made this newly established subject so fascinating. The goal of the presentation is to give a fairly complete treatment of the central limit problem for probability measures on a locally compact group. In analogy to the classical theory the discussion is centered around the infinitely divisible probability measures on the group and their relationship to the convergence of infinitesimal triangular systems.

Littlewood-Paley and Multiplier Theory

Download Littlewood-Paley and Multiplier Theory PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (848 download)

DOWNLOAD NOW!


Book Synopsis Littlewood-Paley and Multiplier Theory by : R. E Edwards

Download or read book Littlewood-Paley and Multiplier Theory written by R. E Edwards and published by . This book was released on 1977 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Littlewood-Paley and Multiplier Theory

Download Littlewood-Paley and Multiplier Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642663664
Total Pages : 223 pages
Book Rating : 4.6/5 (426 download)

DOWNLOAD NOW!


Book Synopsis Littlewood-Paley and Multiplier Theory by : R. E. Edwards

Download or read book Littlewood-Paley and Multiplier Theory written by R. E. Edwards and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended to be a detailed and carefully written account of various versions of the Littlewood-Paley theorem and of some of its applications, together with indications of its general significance in Fourier multiplier theory. We have striven to make the presentation self-contained and unified, and adapted primarily for use by graduate students and established mathematicians who wish to begin studies in these areas: it is certainly not intended for experts in the subject. It has been our experience, and the experience of many of our students and colleagues, that this is an area poorly served by existing books. Their accounts of the subject tend to be either ill-suited to the needs of a beginner, or fragmentary, or, in one or two instances, obscure. We hope that our book will go some way towards filling this gap in the literature. Our presentation of the Littlewood-Paley theorem proceeds along two main lines, the first relating to singular integrals on locally com pact groups, and the second to martingales. Both classical and modern versions of the theorem are dealt with, appropriate to the classical n groups IRn, ?L , Tn and to certain classes of disconnected groups. It is for the disconnected groups of Chapters 4 and 5 that we give two separate accounts of the Littlewood-Paley theorem: the first Fourier analytic, and the second probabilistic.

Fourier Analysis

Download Fourier Analysis PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821883846
Total Pages : 248 pages
Book Rating : 4.8/5 (838 download)

DOWNLOAD NOW!


Book Synopsis Fourier Analysis by : Javier Duoandikoetxea Zuazo

Download or read book Fourier Analysis written by Javier Duoandikoetxea Zuazo and published by American Mathematical Soc.. This book was released on 2001-01-01 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fourier analysis encompasses a variety of perspectives and techniques. This volume presents the real variable methods of Fourier analysis introduced by Calderón and Zygmund. The text was born from a graduate course taught at the Universidad Autonoma de Madrid and incorporates lecture notes from a course taught by José Luis Rubio de Francia at the same university. Motivated by the study of Fourier series and integrals, classical topics are introduced, such as the Hardy-Littlewood maximal function and the Hilbert transform. The remaining portions of the text are devoted to the study of singular integral operators and multipliers. Both classical aspects of the theory and more recent developments, such as weighted inequalities, H1, BMO spaces, and the T1 theorem, are discussed. Chapter 1 presents a review of Fourier series and integrals; Chapters 2 and 3 introduce two operators that are basic to the field: the Hardy-Littlewood maximal function and the Hilbert transform in higher dimensions. Chapters 4 and 5 discuss singular integrals, including modern generalizations. Chapter 6 studies the relationship between H1, BMO, and singular integrals; Chapter 7 presents the elementary theory of weighted norm inequalities. Chapter 8 discusses Littlewood-Paley theory, which had developments that resulted in a number of applications. The final chapter concludes with an important result, the T1 theorem, which has been of crucial importance in the field. This volume has been updated and translated from the original Spanish edition (1995). Minor changes have been made to the core of the book; however, the sections, "Notes and Further Results" have been considerably expanded and incorporate new topics, results, and references. It is geared toward graduate students seeking a concise introduction to the main aspects of the classical theory of singular operators and multipliers. Prerequisites include basic knowledge in Lebesgue integrals and functional analysis.

Weighted Littlewood-Paley Theory and Exponential-Square Integrability

Download Weighted Littlewood-Paley Theory and Exponential-Square Integrability PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540745823
Total Pages : 233 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Weighted Littlewood-Paley Theory and Exponential-Square Integrability by : Michael Wilson

Download or read book Weighted Littlewood-Paley Theory and Exponential-Square Integrability written by Michael Wilson and published by Springer Science & Business Media. This book was released on 2008 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: Littlewood-Paley theory is an essential tool of Fourier analysis, with applications and connections to PDEs, signal processing, and probability. It extends some of the benefits of orthogonality to situations where orthogonality doesn’t really make sense. It does so by letting us control certain oscillatory infinite series of functions in terms of infinite series of non-negative functions. Beginning in the 1980s, it was discovered that this control could be made much sharper than was previously suspected. The present book tries to give a gentle, well-motivated introduction to those discoveries, the methods behind them, their consequences, and some of their applications.

Function Spaces and Partial Differential Equations

Download Function Spaces and Partial Differential Equations PDF Online Free

Author :
Publisher : Oxford Lecture Mathematics and
ISBN 13 : 0198733151
Total Pages : 481 pages
Book Rating : 4.1/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Function Spaces and Partial Differential Equations by : Ali Taheri

Download or read book Function Spaces and Partial Differential Equations written by Ali Taheri and published by Oxford Lecture Mathematics and. This book was released on 2015 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a book written primarily for graduate students and early researchers in the fields of Analysis and Partial Differential Equations (PDEs). Coverage of the material is essentially self-contained, extensive and novel with great attention to details and rigour. The strength of the book primarily lies in its clear and detailed explanations, scope and coverage, highlighting and presenting deep and profound inter-connections between different related and seemingly unrelated disciplines within classical and modern mathematics and above all the extensive collection of examples, worked-out and hinted exercises. There are well over 700 exercises of varying level leading the reader from the basics to the most advanced levels and frontiers of research. The book can be used either for independent study or for a year-long graduate level course. In fact it has its origin in a year-long graduate course taught by the author in Oxford in 2004-5 and various parts of it in other institutions later on. A good number of distinguished researchers and faculty in mathematics worldwide have started their research career from the course that formed the basis for this book.

Classical Fourier Analysis

Download Classical Fourier Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387094326
Total Pages : 494 pages
Book Rating : 4.3/5 (87 download)

DOWNLOAD NOW!


Book Synopsis Classical Fourier Analysis by : Loukas Grafakos

Download or read book Classical Fourier Analysis written by Loukas Grafakos and published by Springer Science & Business Media. This book was released on 2008-09-18 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary goal of this text is to present the theoretical foundation of the field of Fourier analysis. This book is mainly addressed to graduate students in mathematics and is designed to serve for a three-course sequence on the subject. The only prerequisite for understanding the text is satisfactory completion of a course in measure theory, Lebesgue integration, and complex variables. This book is intended to present the selected topics in some depth and stimulate further study. Although the emphasis falls on real variable methods in Euclidean spaces, a chapter is devoted to the fundamentals of analysis on the torus. This material is included for historical reasons, as the genesis of Fourier analysis can be found in trigonometric expansions of periodic functions in several variables. While the 1st edition was published as a single volume, the new edition will contain 120 pp of new material, with an additional chapter on time-frequency analysis and other modern topics. As a result, the book is now being published in 2 separate volumes, the first volume containing the classical topics (Lp Spaces, Littlewood-Paley Theory, Smoothness, etc...), the second volume containing the modern topics (weighted inequalities, wavelets, atomic decomposition, etc...). From a review of the first edition: “Grafakos’s book is very user-friendly with numerous examples illustrating the definitions and ideas. It is more suitable for readers who want to get a feel for current research. The treatment is thoroughly modern with free use of operators and functional analysis. Morever, unlike many authors, Grafakos has clearly spent a great deal of time preparing the exercises.” - Ken Ross, MAA Online

Gaussian Harmonic Analysis

Download Gaussian Harmonic Analysis PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030055973
Total Pages : 501 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Gaussian Harmonic Analysis by : Wilfredo Urbina-Romero

Download or read book Gaussian Harmonic Analysis written by Wilfredo Urbina-Romero and published by Springer. This book was released on 2019-06-21 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: Authored by a ranking authority in Gaussian harmonic analysis, this book embodies a state-of-the-art entrée at the intersection of two important fields of research: harmonic analysis and probability. The book is intended for a very diverse audience, from graduate students all the way to researchers working in a broad spectrum of areas in analysis. Written with the graduate student in mind, it is assumed that the reader has familiarity with the basics of real analysis as well as with classical harmonic analysis, including Calderón-Zygmund theory; also some knowledge of basic orthogonal polynomials theory would be convenient. The monograph develops the main topics of classical harmonic analysis (semigroups, covering lemmas, maximal functions, Littlewood-Paley functions, spectral multipliers, fractional integrals and fractional derivatives, singular integrals) with respect to the Gaussian measure. The text provide an updated exposition, as self-contained as possible, of all the topics in Gaussian harmonic analysis that up to now are mostly scattered in research papers and sections of books; also an exhaustive bibliography for further reading. Each chapter ends with a section of notes and further results where connections between Gaussian harmonic analysis and other connected fields, points of view and alternative techniques are given. Mathematicians and researchers in several areas will find the breadth and depth of the treatment of the subject highly useful.

Martingales in Banach Spaces

Download Martingales in Banach Spaces PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316679462
Total Pages : 591 pages
Book Rating : 4.3/5 (166 download)

DOWNLOAD NOW!


Book Synopsis Martingales in Banach Spaces by : Gilles Pisier

Download or read book Martingales in Banach Spaces written by Gilles Pisier and published by Cambridge University Press. This book was released on 2016-06-06 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the major applications of martingales to the geometry of Banach spaces, and a substantial discussion of harmonic analysis in Banach space valued Hardy spaces is also presented. It covers exciting links between super-reflexivity and some metric spaces related to computer science, as well as an outline of the recently developed theory of non-commutative martingales, which has natural connections with quantum physics and quantum information theory. Requiring few prerequisites and providing fully detailed proofs for the main results, this self-contained study is accessible to graduate students with a basic knowledge of real and complex analysis and functional analysis. Chapters can be read independently, with each building from the introductory notes, and the diversity of topics included also means this book can serve as the basis for a variety of graduate courses.

Analysis in Banach Spaces

Download Analysis in Banach Spaces PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9783319839615
Total Pages : 614 pages
Book Rating : 4.8/5 (396 download)

DOWNLOAD NOW!


Book Synopsis Analysis in Banach Spaces by : Tuomas Hytönen

Download or read book Analysis in Banach Spaces written by Tuomas Hytönen and published by Springer. This book was released on 2018-07-07 with total page 614 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present volume develops the theory of integration in Banach spaces, martingales and UMD spaces, and culminates in a treatment of the Hilbert transform, Littlewood-Paley theory and the vector-valued Mihlin multiplier theorem. Over the past fifteen years, motivated by regularity problems in evolution equations, there has been tremendous progress in the analysis of Banach space-valued functions and processes. The contents of this extensive and powerful toolbox have been mostly scattered around in research papers and lecture notes. Collecting this diverse body of material into a unified and accessible presentation fills a gap in the existing literature. The principal audience that we have in mind consists of researchers who need and use Analysis in Banach Spaces as a tool for studying problems in partial differential equations, harmonic analysis, and stochastic analysis. Self-contained and offering complete proofs, this work is accessible to graduate students and researchers with a background in functional analysis or related areas.

Operators, Functions, and Systems - An Easy Reading

Download Operators, Functions, and Systems - An Easy Reading PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821852655
Total Pages : 458 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Operators, Functions, and Systems - An Easy Reading by : Nikolai K. Nikolski

Download or read book Operators, Functions, and Systems - An Easy Reading written by Nikolai K. Nikolski and published by American Mathematical Soc.. This book was released on 2010-10-06 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: Together with the companion volume by the same author, Operators, Functions, and Systems: An Easy Reading. Volume 1: Hardy, Hankel, and Toeplitz, Mathematical Surveys and Monographs, Vol. 92, AMS, 2002, this unique work combines four major topics of modern analysis and its applications: A. Hardy classes of holomorphic functions, B. Spectral theory of Hankel and Toeplitz operators, C. Function models for linear operators and free interpolations, and D. Infinite-dimensional system theory and signal processing. This volume contains Parts C and D. Function models for linear operators and free interpolations: This is a universal topic and, indeed, is the most influential operator theory technique in the post-spectral-theorem era. In this book, its capacity is tested by solving generalized Carleson-type interpolation problems. Infinite-dimensional system theory and signal processing: This topic is the touchstone of the three previously developed techniques. The presence of this applied topic in a pure mathematics environment reflects important changes in the mathematical landscape of the last 20 years, in that the role of the main consumer and customer of harmonic, complex, and operator analysis has more and more passed from differential equations, scattering theory, and probability to control theory and signal processing. This and the companion volume are geared toward a wide audience of readers, from graduate students to professional mathematicians. They develop an elementary approach to the subject while retaining an expert level that can be applied in advanced analysis and selected applications.

Handbook of Differential Equations: Evolutionary Equations

Download Handbook of Differential Equations: Evolutionary Equations PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080521827
Total Pages : 579 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Differential Equations: Evolutionary Equations by : C.M. Dafermos

Download or read book Handbook of Differential Equations: Evolutionary Equations written by C.M. Dafermos and published by Elsevier. This book was released on 2004-08-24 with total page 579 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains several introductory texts concerning the main directions in the theory of evolutionary partial differential equations. The main objective is to present clear, rigorous,and in depth surveys on the most important aspects of the present theory. The table of contents includes: W.Arendt: Semigroups and evolution equations: Calculus, regularity and kernel estimatesA.Bressan: The front tracking method for systems of conservation lawsE.DiBenedetto, J.M.Urbano,V.Vespri: Current issues on singular and degenerate evolution equations;L.Hsiao, S.Jiang: Nonlinear hyperbolic-parabolic coupled systemsA.Lunardi: Nonlinear parabolic equations and systemsD.Serre:L1-stability of nonlinear waves in scalar conservation laws B.Perthame:Kinetic formulations of parabolic and hyperbolic PDE's: from theory to numerics

Singular Integrals in Quantum Euclidean Spaces

Download Singular Integrals in Quantum Euclidean Spaces PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470449374
Total Pages : 90 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Singular Integrals in Quantum Euclidean Spaces by : Adrían M. González-Pérez

Download or read book Singular Integrals in Quantum Euclidean Spaces written by Adrían M. González-Pérez and published by American Mathematical Society. This book was released on 2021-11-16 with total page 90 pages. Available in PDF, EPUB and Kindle. Book excerpt: View the abstract.

The Functional Calculus for Sectorial Operators

Download The Functional Calculus for Sectorial Operators PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3764376988
Total Pages : 399 pages
Book Rating : 4.7/5 (643 download)

DOWNLOAD NOW!


Book Synopsis The Functional Calculus for Sectorial Operators by : Markus Haase

Download or read book The Functional Calculus for Sectorial Operators written by Markus Haase and published by Springer Science & Business Media. This book was released on 2006-08-18 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a systematic and partly axiomatic treatment of the holomorphic functional calculus for unbounded sectorial operators. The account is generic so that it can be used to construct and interrelate holomorphic functional calculi for other types of unbounded operators. Particularly, an elegant unified approach to holomorphic semigroups is obtained. The last chapter describes applications to PDE, evolution equations and approximation theory as well as the connection with harmonic analysis.

Classical and Multilinear Harmonic Analysis: Volume 1

Download Classical and Multilinear Harmonic Analysis: Volume 1 PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139619160
Total Pages : 389 pages
Book Rating : 4.1/5 (396 download)

DOWNLOAD NOW!


Book Synopsis Classical and Multilinear Harmonic Analysis: Volume 1 by : Camil Muscalu

Download or read book Classical and Multilinear Harmonic Analysis: Volume 1 written by Camil Muscalu and published by Cambridge University Press. This book was released on 2013-01-31 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained and will be useful to graduate students and researchers in both pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. This first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderón–Zygmund and Littlewood–Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman–Meyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form.

Classical and Multilinear Harmonic Analysis

Download Classical and Multilinear Harmonic Analysis PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521882451
Total Pages : 389 pages
Book Rating : 4.5/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Classical and Multilinear Harmonic Analysis by : Camil Muscalu

Download or read book Classical and Multilinear Harmonic Analysis written by Camil Muscalu and published by Cambridge University Press. This book was released on 2013-01-31 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: This contemporary graduate-level text in harmonic analysis introduces the reader to a wide array of analytical results and techniques.

Harmonic Analysis in Euclidean Spaces, Part 1

Download Harmonic Analysis in Euclidean Spaces, Part 1 PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821814362
Total Pages : 488 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Harmonic Analysis in Euclidean Spaces, Part 1 by : Guido Weiss

Download or read book Harmonic Analysis in Euclidean Spaces, Part 1 written by Guido Weiss and published by American Mathematical Soc.. This book was released on 1979 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: