Linear Ordinary Differential Equations

Download Linear Ordinary Differential Equations PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9781611971439
Total Pages : 353 pages
Book Rating : 4.9/5 (714 download)

DOWNLOAD NOW!


Book Synopsis Linear Ordinary Differential Equations by : Earl A. Coddington

Download or read book Linear Ordinary Differential Equations written by Earl A. Coddington and published by SIAM. This book was released on 1997-01-01 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear Ordinary Differential Equations, a text for advanced undergraduate or beginning graduate students, presents a thorough development of the main topics in linear differential equations. A rich collection of applications, examples, and exercises illustrates each topic. The authors reinforce students' understanding of calculus, linear algebra, and analysis while introducing the many applications of differential equations in science and engineering. Three recurrent themes run through the book. The methods of linear algebra are applied directly to the analysis of systems with constant or periodic coefficients and serve as a guide in the study of eigenvalues and eigenfunction expansions. The use of power series, beginning with the matrix exponential function leads to the special functions solving classical equations. Techniques from real analysis illuminate the development of series solutions, existence theorems for initial value problems, the asymptotic behavior solutions, and the convergence of eigenfunction expansions.

Ordinary Differential Equations and Linear Algebra

Download Ordinary Differential Equations and Linear Algebra PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611974097
Total Pages : 308 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Ordinary Differential Equations and Linear Algebra by : Todd Kapitula

Download or read book Ordinary Differential Equations and Linear Algebra written by Todd Kapitula and published by SIAM. This book was released on 2015-11-17 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ordinary differential equations (ODEs) and linear algebra are foundational postcalculus mathematics courses in the sciences. The goal of this text is to help students master both subject areas in a one-semester course. Linear algebra is developed first, with an eye toward solving linear systems of ODEs. A computer algebra system is used for intermediate calculations (Gaussian elimination, complicated integrals, etc.); however, the text is not tailored toward a particular system. Ordinary Differential Equations and Linear Algebra: A Systems Approach systematically develops the linear algebra needed to solve systems of ODEs and includes over 15 distinct applications of the theory, many of which are not typically seen in a textbook at this level (e.g., lead poisoning, SIR models, digital filters). It emphasizes mathematical modeling and contains group projects at the end of each chapter that allow students to more fully explore the interaction between the modeling of a system, the solution of the model, and the resulting physical description.

General Linear Methods for Ordinary Differential Equations

Download General Linear Methods for Ordinary Differential Equations PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470522151
Total Pages : 500 pages
Book Rating : 4.4/5 (75 download)

DOWNLOAD NOW!


Book Synopsis General Linear Methods for Ordinary Differential Equations by : Zdzislaw Jackiewicz

Download or read book General Linear Methods for Ordinary Differential Equations written by Zdzislaw Jackiewicz and published by John Wiley & Sons. This book was released on 2009-08-14 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn to develop numerical methods for ordinary differential equations General Linear Methods for Ordinary Differential Equations fills a gap in the existing literature by presenting a comprehensive and up-to-date collection of recent advances and developments in the field. This book provides modern coverage of the theory, construction, and implementation of both classical and modern general linear methods for solving ordinary differential equations as they apply to a variety of related areas, including mathematics, applied science, and engineering. The author provides the theoretical foundation for understanding basic concepts and presents a short introduction to ordinary differential equations that encompasses the related concepts of existence and uniqueness theory, stability theory, and stiff differential equations and systems. In addition, a thorough presentation of general linear methods explores relevant subtopics such as pre-consistency, consistency, stage-consistency, zero stability, convergence, order- and stage-order conditions, local discretization error, and linear stability theory. Subsequent chapters feature coverage of: Differential equations and systems Introduction to general linear methods (GLMs) Diagonally implicit multistage integration methods (DIMSIMs) Implementation of DIMSIMs Two-step Runge-Kutta (TSRK) methods Implementation of TSRK methods GLMs with inherent Runge-Kutta stability (IRKS) Implementation of GLMs with IRKS General Linear Methods for Ordinary Differential Equations is an excellent book for courses on numerical ordinary differential equations at the upper-undergraduate and graduate levels. It is also a useful reference for academic and research professionals in the fields of computational and applied mathematics, computational physics, civil and chemical engineering, chemistry, and the life sciences.

Linear Differential Equations in the Complex Domain

Download Linear Differential Equations in the Complex Domain PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030546632
Total Pages : 396 pages
Book Rating : 4.0/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Linear Differential Equations in the Complex Domain by : Yoshishige Haraoka

Download or read book Linear Differential Equations in the Complex Domain written by Yoshishige Haraoka and published by Springer Nature. This book was released on 2020-11-16 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a detailed introduction to recent developments in the theory of linear differential systems and integrable total differential systems. Starting from the basic theory of linear ordinary differential equations and integrable systems, it proceeds to describe Katz theory and its applications, extending it to the case of several variables. In addition, connection problems, deformation theory, and the theory of integral representations are comprehensively covered. Complete proofs are given, offering the reader a precise account of the classical and modern theory of linear differential equations in the complex domain, including an exposition of Pfaffian systems and their monodromy problems. The prerequisites are a course in complex analysis and the basics of differential equations, topology and differential geometry. This book will be useful for graduate students, specialists in differential equations, and for non-specialists who want to use differential equations.

Differential Equations

Download Differential Equations PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521816588
Total Pages : 554 pages
Book Rating : 4.8/5 (165 download)

DOWNLOAD NOW!


Book Synopsis Differential Equations by : A. C. King

Download or read book Differential Equations written by A. C. King and published by Cambridge University Press. This book was released on 2003-05-08 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential equations are vital to science, engineering and mathematics, and this book enables the reader to develop the required skills needed to understand them thoroughly. The authors focus on constructing solutions analytically and interpreting their meaning and use MATLAB extensively to illustrate the material along with many examples based on interesting and unusual real world problems. A large selection of exercises is also provided.

Differential Equations

Download Differential Equations PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 :
Total Pages : 736 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Differential Equations by : Shepley L. Ross

Download or read book Differential Equations written by Shepley L. Ross and published by John Wiley & Sons. This book was released on 1974 with total page 736 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamental methods and applications; Fundamental theory and further methods;

Asymptotic Analysis

Download Asymptotic Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642580165
Total Pages : 370 pages
Book Rating : 4.6/5 (425 download)

DOWNLOAD NOW!


Book Synopsis Asymptotic Analysis by : Mikhail V. Fedoryuk

Download or read book Asymptotic Analysis written by Mikhail V. Fedoryuk and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book we present the main results on the asymptotic theory of ordinary linear differential equations and systems where there is a small parameter in the higher derivatives. We are concerned with the behaviour of solutions with respect to the parameter and for large values of the independent variable. The literature on this question is considerable and widely dispersed, but the methods of proofs are sufficiently similar for this material to be put together as a reference book. We have restricted ourselves to homogeneous equations. The asymptotic behaviour of an inhomogeneous equation can be obtained from the asymptotic behaviour of the corresponding fundamental system of solutions by applying methods for deriving asymptotic bounds on the relevant integrals. We systematically use the concept of an asymptotic expansion, details of which can if necessary be found in [Wasow 2, Olver 6]. By the "formal asymptotic solution" (F.A.S.) is understood a function which satisfies the equation to some degree of accuracy. Although this concept is not precisely defined, its meaning is always clear from the context. We also note that the term "Stokes line" used in the book is equivalent to the term "anti-Stokes line" employed in the physics literature.

Introduction to Ordinary Differential Equations

Download Introduction to Ordinary Differential Equations PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 1483226220
Total Pages : 444 pages
Book Rating : 4.4/5 (832 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Ordinary Differential Equations by : Albert L. Rabenstein

Download or read book Introduction to Ordinary Differential Equations written by Albert L. Rabenstein and published by Academic Press. This book was released on 2014-05-12 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Ordinary Differential Equations is a 12-chapter text that describes useful elementary methods of finding solutions using ordinary differential equations. This book starts with an introduction to the properties and complex variable of linear differential equations. Considerable chapters covered topics that are of particular interest in applications, including Laplace transforms, eigenvalue problems, special functions, Fourier series, and boundary-value problems of mathematical physics. Other chapters are devoted to some topics that are not directly concerned with finding solutions, and that should be of interest to the mathematics major, such as the theorems about the existence and uniqueness of solutions. The final chapters discuss the stability of critical points of plane autonomous systems and the results about the existence of periodic solutions of nonlinear equations. This book is great use to mathematicians, physicists, and undergraduate students of engineering and the science who are interested in applications of differential equation.

Global Properties of Linear Ordinary Differential Equations

Download Global Properties of Linear Ordinary Differential Equations PDF Online Free

Author :
Publisher : Springer
ISBN 13 :
Total Pages : 344 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Global Properties of Linear Ordinary Differential Equations by : Frantisek Neuman

Download or read book Global Properties of Linear Ordinary Differential Equations written by Frantisek Neuman and published by Springer. This book was released on 1991 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents an authoritative, unified overview of the methods and results concerning the global properties of linear differential equations of order n (n>=2). It does not, however, seek to be comprehensive. Rather, it contains a selection of results which richly illustrate the unified approach presented. By making use of recent methods and results from many different areas of mathematics and by introducing several original methods, global solutions of problems previously studied only locally are given. The structure of global transformations is described algebraically, and a new geometrical approach is introduced which leads to global canonical forms suitable for Cartan's moving frame-of-reference method. The theory discussed also provides effective tools for solving some open problems, especially relating to the distribution of zeros of solutions. In addition, the theory of functional equations plays an important role in studying the asymptotic behaviour of solutions. Applications to differential geometry and functional equations are also described. The volume is largely self-contained. This book is for mathematicians, computer scientists, physicists, chemists, engineers, and others whose work involves the use of linear differential equations.

Ordinary Differential Equations and Stability Theory:

Download Ordinary Differential Equations and Stability Theory: PDF Online Free

Author :
Publisher : Courier Dover Publications
ISBN 13 : 0486837599
Total Pages : 179 pages
Book Rating : 4.4/5 (868 download)

DOWNLOAD NOW!


Book Synopsis Ordinary Differential Equations and Stability Theory: by : David A. Sanchez

Download or read book Ordinary Differential Equations and Stability Theory: written by David A. Sanchez and published by Courier Dover Publications. This book was released on 2019-09-18 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: This brief modern introduction to the subject of ordinary differential equations emphasizes stability theory. Concisely and lucidly expressed, it is intended as a supplementary text for advanced undergraduates or beginning graduate students who have completed a first course in ordinary differential equations. The author begins by developing the notions of a fundamental system of solutions, the Wronskian, and the corresponding fundamental matrix. Subsequent chapters explore the linear equation with constant coefficients, stability theory for autonomous and nonautonomous systems, and the problems of the existence and uniqueness of solutions and related topics. Problems at the end of each chapter and two Appendixes on special topics enrich the text.

Notes on Diffy Qs

Download Notes on Diffy Qs PDF Online Free

Author :
Publisher :
ISBN 13 : 9781706230236
Total Pages : 468 pages
Book Rating : 4.2/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Notes on Diffy Qs by : Jiri Lebl

Download or read book Notes on Diffy Qs written by Jiri Lebl and published by . This book was released on 2019-11-13 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: Version 6.0. An introductory course on differential equations aimed at engineers. The book covers first order ODEs, higher order linear ODEs, systems of ODEs, Fourier series and PDEs, eigenvalue problems, the Laplace transform, and power series methods. It has a detailed appendix on linear algebra. The book was developed and used to teach Math 286/285 at the University of Illinois at Urbana-Champaign, and in the decade since, it has been used in many classrooms, ranging from small community colleges to large public research universities. See https: //www.jirka.org/diffyqs/ for more information, updates, errata, and a list of classroom adoptions.

Ordinary Differential Equations

Download Ordinary Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461436184
Total Pages : 807 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Ordinary Differential Equations by : William A. Adkins

Download or read book Ordinary Differential Equations written by William A. Adkins and published by Springer Science & Business Media. This book was released on 2012-07-01 with total page 807 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlike most texts in differential equations, this textbook gives an early presentation of the Laplace transform, which is then used to motivate and develop many of the remaining differential equation concepts for which it is particularly well suited. For example, the standard solution methods for constant coefficient linear differential equations are immediate and simplified, and solution methods for constant coefficient systems are streamlined. By introducing the Laplace transform early in the text, students become proficient in its use while at the same time learning the standard topics in differential equations. The text also includes proofs of several important theorems that are not usually given in introductory texts. These include a proof of the injectivity of the Laplace transform and a proof of the existence and uniqueness theorem for linear constant coefficient differential equations. Along with its unique traits, this text contains all the topics needed for a standard three- or four-hour, sophomore-level differential equations course for students majoring in science or engineering. These topics include: first order differential equations, general linear differential equations with constant coefficients, second order linear differential equations with variable coefficients, power series methods, and linear systems of differential equations. It is assumed that the reader has had the equivalent of a one-year course in college calculus.

A Textbook on Ordinary Differential Equations

Download A Textbook on Ordinary Differential Equations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319164082
Total Pages : 337 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis A Textbook on Ordinary Differential Equations by : Shair Ahmad

Download or read book A Textbook on Ordinary Differential Equations written by Shair Ahmad and published by Springer. This book was released on 2015-06-05 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers readers a primer on the theory and applications of Ordinary Differential Equations. The style used is simple, yet thorough and rigorous. Each chapter ends with a broad set of exercises that range from the routine to the more challenging and thought-provoking. Solutions to selected exercises can be found at the end of the book. The book contains many interesting examples on topics such as electric circuits, the pendulum equation, the logistic equation, the Lotka-Volterra system, the Laplace Transform, etc., which introduce students to a number of interesting aspects of the theory and applications. The work is mainly intended for students of Mathematics, Physics, Engineering, Computer Science and other areas of the natural and social sciences that use ordinary differential equations, and who have a firm grasp of Calculus and a minimal understanding of the basic concepts used in Linear Algebra. It also studies a few more advanced topics, such as Stability Theory and Boundary Value Problems, which may be suitable for more advanced undergraduate or first-year graduate students. The second edition has been revised to correct minor errata, and features a number of carefully selected new exercises, together with more detailed explanations of some of the topics. A complete Solutions Manual, containing solutions to all the exercises published in the book, is available. Instructors who wish to adopt the book may request the manual by writing directly to one of the authors.

Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations

Download Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387986901
Total Pages : 314 pages
Book Rating : 4.3/5 (879 download)

DOWNLOAD NOW!


Book Synopsis Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations by : Werner Balser

Download or read book Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations written by Werner Balser and published by Springer Science & Business Media. This book was released on 2000 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simple Ordinary Differential Equations may have solutions in terms of power series whose coefficients grow at such a rate that the series has a radius of convergence equal to zero. In fact, every linear meromorphic system has a formal solution of a certain form, which can be relatively easily computed, but which generally involves such power series diverging everywhere. In this book the author presents the classical theory of meromorphic systems of ODE in the new light shed upon it by the recent achievements in the theory of summability of formal power series.

Third Order Linear Differential Equations

Download Third Order Linear Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9400937156
Total Pages : 285 pages
Book Rating : 4.4/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Third Order Linear Differential Equations by : Michal Gregus

Download or read book Third Order Linear Differential Equations written by Michal Gregus and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: Approach your problems from the right It isn't that they can't see the solution. It end and begin with the answers. Then is that they can't see the problem. one day, perhaps you will find the final question. G. K. Chesterton. The Scandal of Father Brown 'The Point of a Pin'. 'The Hermit Gad in Crane Feathers' in R. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. How ever, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the stI11fture of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisci plines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classifi~ation schemes.

Ordinary Differential Equations and Dynamical Systems

Download Ordinary Differential Equations and Dynamical Systems PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 147047641X
Total Pages : 370 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Ordinary Differential Equations and Dynamical Systems by : Gerald Teschl

Download or read book Ordinary Differential Equations and Dynamical Systems written by Gerald Teschl and published by American Mathematical Society. This book was released on 2024-01-12 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.

Linear Differential Equations and Oscillators

Download Linear Differential Equations and Oscillators PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429642792
Total Pages : 324 pages
Book Rating : 4.4/5 (296 download)

DOWNLOAD NOW!


Book Synopsis Linear Differential Equations and Oscillators by : Luis Manuel Braga da Costa Campos

Download or read book Linear Differential Equations and Oscillators written by Luis Manuel Braga da Costa Campos and published by CRC Press. This book was released on 2019-11-05 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear Differential Equations and Oscillators is the first book within Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-volume Set. As a set, they are the fourth volume in the series Mathematics and Physics Applied to Science and Technology. This first book consists of chapters 1 and 2 of the fourth volume. The first chapter covers linear differential equations of any order whose unforced solution can be obtained from the roots of a characteristic polynomial, namely those: (i) with constant coefficients; (ii) with homogeneous power coefficients with the exponent equal to the order of derivation. The method of characteristic polynomials is also applied to (iii) linear finite difference equations of any order with constant coefficients. The unforced and forced solutions of (i,ii,iii) are examples of some general properties of ordinary differential equations. The second chapter applies the theory of the first chapter to linear second-order oscillators with one degree-of-freedom, such as the mechanical mass-damper-spring-force system and the electrical self-resistor-capacitor-battery circuit. In both cases are treated free undamped, damped, and amplified oscillations; also forced oscillations including beats, resonance, discrete and continuous spectra, and impulsive inputs. Describes general properties of differential and finite difference equations, with focus on linear equations and constant and some power coefficients Presents particular and general solutions for all cases of differential and finite difference equations Provides complete solutions for many cases of forcing including resonant cases Discusses applications to linear second-order mechanical and electrical oscillators with damping Provides solutions with forcing including resonance using the characteristic polynomial, Green' s functions, trigonometrical series, Fourier integrals and Laplace transforms