Linear Functional Equations. Operator Approach

Download Linear Functional Equations. Operator Approach PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034889771
Total Pages : 188 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Linear Functional Equations. Operator Approach by : Anatolij Antonevich

Download or read book Linear Functional Equations. Operator Approach written by Anatolij Antonevich and published by Birkhäuser. This book was released on 2012-12-06 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book we shall study linear functional equations of the form m bu(x) == Lak(X)U(Qk(X)) = f(x), (1) k=l where U is an unknown function from a given space F(X) of functions on a set X, Qk: X -+ X are given mappings, ak and f are given functions. Our approach is based on the investigation of the operators given by the left-hand side of equa tion (1). In what follows such operators will be called functional operators. We will pay special attention to the spectral properties of functional operators, first of all, to invertibility and the Noether property. Since the set X, the space F(X), the mappings Qk and the coefficients ak are arbitrary, the class of operators of the form (1) is very rich and some of its individ ual representatives are related with problems arising in various areas of mathemat ics and its applications. In addition to the classical theory of functional equations, among such areas one can indicate the theory of functional-differential equations with deviating argument, the theory of nonlocal problems for partial differential equations, the theory of boundary value problems for the equation of a vibrating string and equations of mixed type, a number of problems of the general theory of operator algebras and the theory of dynamical systems, the spectral theory of au tomorphisms of Banach algebras, and other problems.

Stability of Functional Equations in Several Variables

Download Stability of Functional Equations in Several Variables PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780817640248
Total Pages : 330 pages
Book Rating : 4.6/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Stability of Functional Equations in Several Variables by : D.H. Hyers

Download or read book Stability of Functional Equations in Several Variables written by D.H. Hyers and published by Springer Science & Business Media. This book was released on 1998-09-01 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: The notion of stability of functional equations of several variables in the sense used here had its origins more than half a century ago when S. Ulam posed the fundamental problem and Donald H. Hyers gave the first significant partial solution in 1941. The subject has been revised and de veloped by an increasing number of mathematicians, particularly during the last two decades. Three survey articles have been written on the subject by D. H. Hyers (1983), D. H. Hyers and Th. M. Rassias (1992), and most recently by G. L. Forti (1995). None of these works included proofs of the results which were discussed. Furthermore, it should be mentioned that wider interest in this subject area has increased substantially over the last years, yet the pre sentation of research has been confined mainly to journal articles. The time seems ripe for a comprehensive introduction to this subject, which is the purpose of the present work. This book is the first to cover the classical results along with current research in the subject. An attempt has been made to present the material in an integrated and self-contained fashion. In addition to the main topic of the stability of certain functional equa tions, some other related problems are discussed, including the stability of the convex functional inequality and the stability of minimum points. A sad note. During the final stages of the manuscript our beloved co author and friend Professor Donald H. Hyers passed away.

Discrete Dynamics and Difference Equations

Download Discrete Dynamics and Difference Equations PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814287644
Total Pages : 438 pages
Book Rating : 4.8/5 (142 download)

DOWNLOAD NOW!


Book Synopsis Discrete Dynamics and Difference Equations by : Saber N. Elaydi

Download or read book Discrete Dynamics and Difference Equations written by Saber N. Elaydi and published by World Scientific. This book was released on 2010 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume holds a collection of articles based on the talks presented at ICDEA 2007 in Lisbon, Portugal. The volume encompasses current topics on stability and bifurcation, chaos, mathematical biology, iteration theory, nonautonomous systems, and stochastic dynamical systems.

Linear Functional Analysis

Download Linear Functional Analysis PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1447172809
Total Pages : 446 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Linear Functional Analysis by : Hans Wilhelm Alt

Download or read book Linear Functional Analysis written by Hans Wilhelm Alt and published by Springer. This book was released on 2016-07-06 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an introduction to Linear Functional Analysis, which is a synthesis of algebra, topology, and analysis. In addition to the basic theory it explains operator theory, distributions, Sobolev spaces, and many other things. The text is self-contained and includes all proofs, as well as many exercises, most of them with solutions. Moreover, there are a number of appendices, for example on Lebesgue integration theory. A complete introduction to the subject, Linear Functional Analysis will be particularly useful to readers who want to quickly get to the key statements and who are interested in applications to differential equations.

Functional Analysis, Sobolev Spaces and Partial Differential Equations

Download Functional Analysis, Sobolev Spaces and Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387709142
Total Pages : 600 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Functional Analysis, Sobolev Spaces and Partial Differential Equations by : Haim Brezis

Download or read book Functional Analysis, Sobolev Spaces and Partial Differential Equations written by Haim Brezis and published by Springer Science & Business Media. This book was released on 2010-11-02 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.

Linear Functional Analysis

Download Linear Functional Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1447136551
Total Pages : 276 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Linear Functional Analysis by : Bryan Rynne

Download or read book Linear Functional Analysis written by Bryan Rynne and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the ideas and methods of linear func tional analysis at a level appropriate to the final year of an undergraduate course at a British university. The prerequisites for reading it are a standard undergraduate knowledge of linear algebra and real analysis (including the the ory of metric spaces). Part of the development of functional analysis can be traced to attempts to find a suitable framework in which to discuss differential and integral equa tions. Often, the appropriate setting turned out to be a vector space of real or complex-valued functions defined on some set. In general, such a vector space is infinite-dimensional. This leads to difficulties in that, although many of the elementary properties of finite-dimensional vector spaces hold in infinite dimensional vector spaces, many others do not. For example, in general infinite dimensional vector spaces there is no framework in which to make sense of an alytic concepts such as convergence and continuity. Nevertheless, on the spaces of most interest to us there is often a norm (which extends the idea of the length of a vector to a somewhat more abstract setting). Since a norm on a vector space gives rise to a metric on the space, it is now possible to do analysis in the space. As real or complex-valued functions are often called functionals, the term functional analysis came to be used for this topic. We now briefly outline the contents of the book.

Handbook of Functional Equations

Download Handbook of Functional Equations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1493912860
Total Pages : 394 pages
Book Rating : 4.4/5 (939 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Functional Equations by : Themistocles M. Rassias

Download or read book Handbook of Functional Equations written by Themistocles M. Rassias and published by Springer. This book was released on 2014-11-21 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook consists of seventeen chapters written by eminent scientists from the international mathematical community, who present important research works in the field of mathematical analysis and related subjects, particularly in the Ulam stability theory of functional equations. The book provides an insight into a large domain of research with emphasis to the discussion of several theories, methods and problems in approximation theory, analytic inequalities, functional analysis, computational algebra and applications. The notion of stability of functional equations has its origins with S. M. Ulam, who posed the fundamental problem for approximate homomorphisms in 1940 and with D. H. Hyers, Th. M. Rassias, who provided the first significant solutions for additive and linear mappings in 1941 and 1978, respectively. During the last decade the notion of stability of functional equations has evolved into a very active domain of mathematical research with several applications of interdisciplinary nature. The chapters of this handbook focus mainly on both old and recent developments on the equation of homomorphism for square symmetric groupoids, the linear and polynomial functional equations in a single variable, the Drygas functional equation on amenable semigroups, monomial functional equation, the Cauchy–Jensen type mappings, differential equations and differential operators, operational equations and inclusions, generalized module left higher derivations, selections of set-valued mappings, D’Alembert’s functional equation, characterizations of information measures, functional equations in restricted domains, as well as generalized functional stability and fixed point theory.

Iterative Functional Equations

Download Iterative Functional Equations PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521355612
Total Pages : 580 pages
Book Rating : 4.3/5 (556 download)

DOWNLOAD NOW!


Book Synopsis Iterative Functional Equations by : Marek Kuczma

Download or read book Iterative Functional Equations written by Marek Kuczma and published by Cambridge University Press. This book was released on 1990-07-27 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: A cohesive and comprehensive account of the modern theory of iterative functional equations. Many of the results included have appeared before only in research literature, making this an essential volume for all those working in functional equations and in such areas as dynamical systems and chaos, to which the theory is closely related. The authors introduce the reader to the theory and then explore the most recent developments and general results. Fundamental notions such as the existence and uniqueness of solutions to the equations are stressed throughout, as are applications of the theory to such areas as branching processes, differential equations, ergodic theory, functional analysis and geometry. Other topics covered include systems of linear and nonlinear equations of finite and infinite ORD various function classes, conjugate and commutable functions, linearization, iterative roots of functions, and special functional equations.

Functional Equations and How to Solve Them

Download Functional Equations and How to Solve Them PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387489010
Total Pages : 139 pages
Book Rating : 4.3/5 (874 download)

DOWNLOAD NOW!


Book Synopsis Functional Equations and How to Solve Them by : Christopher G. Small

Download or read book Functional Equations and How to Solve Them written by Christopher G. Small and published by Springer Science & Business Media. This book was released on 2007-04-03 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many books have been written on the theory of functional equations, but very few help readers solve functional equations in mathematics competitions and mathematical problem solving. This book fills that gap. Each chapter includes a list of problems associated with the covered material. These vary in difficulty, with the easiest being accessible to any high school student who has read the chapter carefully. The most difficult will challenge students studying for the International Mathematical Olympiad or the Putnam Competition. An appendix provides a springboard for further investigation of the concepts of limits, infinite series and continuity.

Volterra Integral and Functional Equations

Download Volterra Integral and Functional Equations PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521372895
Total Pages : 727 pages
Book Rating : 4.5/5 (213 download)

DOWNLOAD NOW!


Book Synopsis Volterra Integral and Functional Equations by : G. Gripenberg

Download or read book Volterra Integral and Functional Equations written by G. Gripenberg and published by Cambridge University Press. This book was released on 1990 with total page 727 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book looks at the theories of Volterra integral and functional equations.

Lecture Notes on Functional Analysis

Download Lecture Notes on Functional Analysis PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821887718
Total Pages : 265 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Lecture Notes on Functional Analysis by : Alberto Bressan

Download or read book Lecture Notes on Functional Analysis written by Alberto Bressan and published by American Mathematical Soc.. This book was released on 2013 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is addressed to graduate students in mathematics or other disciplines who wish to understand the essential concepts of functional analysis and their applications to partial differential equations. The book is intentionally concise, presenting all the fundamental concepts and results but omitting the more specialized topics. Enough of the theory of Sobolev spaces and semigroups of linear operators is included as needed to develop significant applications to elliptic, parabolic, and hyperbolic PDEs. Throughout the book, care has been taken to explain the connections between theorems in functional analysis and familiar results of finite-dimensional linear algebra. The main concepts and ideas used in the proofs are illustrated with a large number of figures. A rich collection of homework problems is included at the end of most chapters. The book is suitable as a text for a one-semester graduate course.

Functional Equations in Several Variables

Download Functional Equations in Several Variables PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521352765
Total Pages : 490 pages
Book Rating : 4.3/5 (527 download)

DOWNLOAD NOW!


Book Synopsis Functional Equations in Several Variables by : J. Aczél

Download or read book Functional Equations in Several Variables written by J. Aczél and published by Cambridge University Press. This book was released on 1989 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: This treatise deals with modern theory of functional equations in several variables and their applications to mathematics, information theory, and the natural, behavioural and social sciences. The authors have chosen to emphasize applications, though not at the expense of theory, so they have kept the prerequisites to a minimum.

A Short Course on Functional Equations

Download A Short Course on Functional Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9400937490
Total Pages : 175 pages
Book Rating : 4.4/5 (9 download)

DOWNLOAD NOW!


Book Synopsis A Short Course on Functional Equations by : J. Aczél

Download or read book A Short Course on Functional Equations written by J. Aczél and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recently I taught short courses on functional equations at several universities (Barcelona, Bern, Graz, Hamburg, Milan, Waterloo). My aim was to introduce the most important equations and methods of solution through actual (not artifi cial) applications which were recent and with which I had something to do. Most of them happened to be related to the social or behavioral sciences. All were originally answers to questions posed by specialists in the respective applied fields. Here I give a somewhat extended version of these lectures, with more recent results and applications included. As previous knowledge just the basic facts of calculus and algebra are supposed. Parts where somewhat more (measure theory) is needed and sketches of lengthier calcula tions are set in fine print. I am grateful to Drs. J. Baker (Waterloo, Ont.), W. Forg-Rob (Innsbruck, Austria) and C. Wagner (Knoxville, Tenn.) for critical remarks and to Mrs. Brenda Law for care ful computer-typing of the manuscript (in several versions). A note on numbering of statements and references: The numbering of Lemmata, Propositions, Theorems, Corollaries and (separately) formulae starts anew in each section. If quoted in another section, the section number is added, e.g. (2.10) or Theorem 1.2. References are quoted by the last names of the authors and the last two digits of the year, e.g. Daroczy-Losonczi [671. 1 1. An aggregation theorem for allocation problems. Cauchy equation for single-and multiplace functions. Two extension theorems.

Analytic Solutions of Functional Equations

Download Analytic Solutions of Functional Equations PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9812793348
Total Pages : 296 pages
Book Rating : 4.8/5 (127 download)

DOWNLOAD NOW!


Book Synopsis Analytic Solutions of Functional Equations by : Sui Sun Cheng

Download or read book Analytic Solutions of Functional Equations written by Sui Sun Cheng and published by World Scientific. This book was released on 2008 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a self-contained and unified introduction to the properties of analytic functions. Based on recent research results, it provides many examples of functional equations to show how analytic solutions can be found.Unlike in other books, analytic functions are treated here as those generated by sequences with positive radii of convergence. By developing operational means for handling sequences, functional equations can then be transformed into recurrence relations or difference equations in a straightforward manner. Their solutions can also be found either by qualitative means or by computation. The subsequent formal power series function can then be asserted as a true solution once convergence is established by various convergence tests and majorization techniques. Functional equations in this book may also be functional differential equations or iterative equations, which are different from the differential equations studied in standard textbooks since composition of known or unknown functions are involved.

Functional Equations and Inequalities with Applications

Download Functional Equations and Inequalities with Applications PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387894926
Total Pages : 817 pages
Book Rating : 4.3/5 (878 download)

DOWNLOAD NOW!


Book Synopsis Functional Equations and Inequalities with Applications by : Palaniappan Kannappan

Download or read book Functional Equations and Inequalities with Applications written by Palaniappan Kannappan and published by Springer Science & Business Media. This book was released on 2009-06-10 with total page 817 pages. Available in PDF, EPUB and Kindle. Book excerpt: Functional Equations and Inequalities with Applications presents a comprehensive, nearly encyclopedic, study of the classical topic of functional equations. This self-contained monograph explores all aspects of functional equations and their applications to related topics, such as differential equations, integral equations, the Laplace transformation, the calculus of finite differences, and many other basic tools in analysis. Each chapter examines a particular family of equations and gives an in-depth study of its applications as well as examples and exercises to support the material.

Linear Operator Equations: Approximation And Regularization

Download Linear Operator Equations: Approximation And Regularization PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 981446967X
Total Pages : 264 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Linear Operator Equations: Approximation And Regularization by : M Thamban Nair

Download or read book Linear Operator Equations: Approximation And Regularization written by M Thamban Nair and published by World Scientific. This book was released on 2009-05-05 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many problems in science and engineering have their mathematical formulation as an operator equation Tx=y, where T is a linear or nonlinear operator between certain function spaces. In practice, such equations are solved approximately using numerical methods, as their exact solution may not often be possible or may not be worth looking for due to physical constraints. In such situations, it is desirable to know how the so-called approximate solution approximates the exact solution, and what the error involved in such procedures would be.This book is concerned with the investigation of the above theoretical issues related to approximately solving linear operator equations. The main tools used for this purpose are basic results from functional analysis and some rudimentary ideas from numerical analysis. To make this book more accessible to readers, no in-depth knowledge on these disciplines is assumed for reading this book.

An Introduction to the Theory of Functional Equations and Inequalities

Download An Introduction to the Theory of Functional Equations and Inequalities PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3764387491
Total Pages : 595 pages
Book Rating : 4.7/5 (643 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to the Theory of Functional Equations and Inequalities by : Marek Kuczma

Download or read book An Introduction to the Theory of Functional Equations and Inequalities written by Marek Kuczma and published by Springer Science & Business Media. This book was released on 2009-03-12 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: Marek Kuczma was born in 1935 in Katowice, Poland, and died there in 1991. After finishing high school in his home town, he studied at the Jagiellonian University in Kraków. He defended his doctoral dissertation under the supervision of Stanislaw Golab. In the year of his habilitation, in 1963, he obtained a position at the Katowice branch of the Jagiellonian University (now University of Silesia, Katowice), and worked there till his death. Besides his several administrative positions and his outstanding teaching activity, he accomplished excellent and rich scientific work publishing three monographs and 180 scientific papers. He is considered to be the founder of the celebrated Polish school of functional equations and inequalities. "The second half of the title of this book describes its contents adequately. Probably even the most devoted specialist would not have thought that about 300 pages can be written just about the Cauchy equation (and on some closely related equations and inequalities). And the book is by no means chatty, and does not even claim completeness. Part I lists the required preliminary knowledge in set and measure theory, topology and algebra. Part II gives details on solutions of the Cauchy equation and of the Jensen inequality [...], in particular on continuous convex functions, Hamel bases, on inequalities following from the Jensen inequality [...]. Part III deals with related equations and inequalities (in particular, Pexider, Hosszú, and conditional equations, derivations, convex functions of higher order, subadditive functions and stability theorems). It concludes with an excursion into the field of extensions of homomorphisms in general." (Janos Aczel, Mathematical Reviews) "This book is a real holiday for all the mathematicians independently of their strict speciality. One can imagine what deliciousness represents this book for functional equationists." (B. Crstici, Zentralblatt für Mathematik)