Lie Groups, Lie Algebras, and Representations

Download Lie Groups, Lie Algebras, and Representations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319134671
Total Pages : 452 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Lie Groups, Lie Algebras, and Representations by : Brian Hall

Download or read book Lie Groups, Lie Algebras, and Representations written by Brian Hall and published by Springer. This book was released on 2015-05-11 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compact groups, independent of Lie-algebraic arguments The second edition of Lie Groups, Lie Algebras, and Representations contains many substantial improvements and additions, among them: an entirely new part devoted to the structure and representation theory of compact Lie groups; a complete derivation of the main properties of root systems; the construction of finite-dimensional representations of semisimple Lie algebras has been elaborated; a treatment of universal enveloping algebras, including a proof of the Poincaré–Birkhoff–Witt theorem and the existence of Verma modules; complete proofs of the Weyl character formula, the Weyl dimension formula and the Kostant multiplicity formula. Review of the first edition: This is an excellent book. It deserves to, and undoubtedly will, become the standard text for early graduate courses in Lie group theory ... an important addition to the textbook literature ... it is highly recommended. — The Mathematical Gazette

An Introduction to Lie Groups and Lie Algebras

Download An Introduction to Lie Groups and Lie Algebras PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521889693
Total Pages : 237 pages
Book Rating : 4.5/5 (218 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Lie Groups and Lie Algebras by : Alexander A. Kirillov

Download or read book An Introduction to Lie Groups and Lie Algebras written by Alexander A. Kirillov and published by Cambridge University Press. This book was released on 2008-07-31 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.

Lie Group Mathematics

Download Lie Group Mathematics PDF Online Free

Author :
Publisher : CreateSpace
ISBN 13 : 9781518613715
Total Pages : 250 pages
Book Rating : 4.6/5 (137 download)

DOWNLOAD NOW!


Book Synopsis Lie Group Mathematics by : Edited by: Kisak

Download or read book Lie Group Mathematics written by Edited by: Kisak and published by CreateSpace. This book was released on 2015-10-12 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Lie groups are smooth differentiable manifolds and as such can be studied using differential calculus, in contrast with the case of more general topological groups. Lie groups represent the best-developed theory of continuous symmetry of mathematical objects and structures, which makes them indispensable tools for many parts of contemporary mathematics, as well as for modern theoretical physics. Lie groups provide a natural framework for analyzing the continuous symmetries of differential equations in much the same way as permutation groups are used in Galois theory for analyzing the discrete symmetries of algebraic equations. An extension of Galois theory to the case of continuous symmetry groups was one of Lie's principal motivations. This book gives an overview of the current state of Lie Group Mathematics.

Lie Groups, Lie Algebras, and Some of Their Applications

Download Lie Groups, Lie Algebras, and Some of Their Applications PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486131564
Total Pages : 610 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Lie Groups, Lie Algebras, and Some of Their Applications by : Robert Gilmore

Download or read book Lie Groups, Lie Algebras, and Some of Their Applications written by Robert Gilmore and published by Courier Corporation. This book was released on 2012-05-23 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text introduces upper-level undergraduates to Lie group theory and physical applications. It further illustrates Lie group theory's role in several fields of physics. 1974 edition. Includes 75 figures and 17 tables, exercises and problems.

Lie Groups

Download Lie Groups PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030618242
Total Pages : 371 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Lie Groups by : Luiz A. B. San Martin

Download or read book Lie Groups written by Luiz A. B. San Martin and published by Springer Nature. This book was released on 2021-02-23 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides an essential introduction to Lie groups, presenting the theory from its fundamental principles. Lie groups are a special class of groups that are studied using differential and integral calculus methods. As a mathematical structure, a Lie group combines the algebraic group structure and the differentiable variety structure. Studies of such groups began around 1870 as groups of symmetries of differential equations and the various geometries that had emerged. Since that time, there have been major advances in Lie theory, with ramifications for diverse areas of mathematics and its applications. Each chapter of the book begins with a general, straightforward introduction to the concepts covered; then the formal definitions are presented; and end-of-chapter exercises help to check and reinforce comprehension. Graduate and advanced undergraduate students alike will find in this book a solid yet approachable guide that will help them continue their studies with confidence.

Lie Groups

Download Lie Groups PDF Online Free

Author :
Publisher : Oxford University Press, USA
ISBN 13 : 9780199202515
Total Pages : 290 pages
Book Rating : 4.2/5 (25 download)

DOWNLOAD NOW!


Book Synopsis Lie Groups by : Wulf Rossmann

Download or read book Lie Groups written by Wulf Rossmann and published by Oxford University Press, USA. This book was released on 2006 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the theory of Lie groups and their representations at the advanced undergraduate or beginning graduate level. It covers the essentials of the subject starting from basic undergraduate mathematics. The correspondence between linear Lie groups and Lie algebras is developed in its local and global aspects. The classical groups are analyzed in detail, first with elementary matrix methods, then with the help of the structural tools typical of the theory of semisimple groups, such as Cartan subgroups, root, weights and reflections. The fundamental groups of the classical groups are worked out as an application of these methods. Manifolds are introduced when needed, in connection with homogeneous spaces, and the elements of differential and integral calculus on manifolds are presented, with special emphasis on integration on groups and homogeneous spaces. Representation theory starts from first principles, such as Schur's lemma and its consequences, and proceeds from there to the Peter-Weyl theorem, Weyl's character formula, and the Borel-Weil theorem, all in the context of linear groups.

Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics

Download Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475719108
Total Pages : 218 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics by : D.H. Sattinger

Download or read book Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics written by D.H. Sattinger and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended as an introductory text on the subject of Lie groups and algebras and their role in various fields of mathematics and physics. It is written by and for researchers who are primarily analysts or physicists, not algebraists or geometers. Not that we have eschewed the algebraic and geo metric developments. But we wanted to present them in a concrete way and to show how the subject interacted with physics, geometry, and mechanics. These interactions are, of course, manifold; we have discussed many of them here-in particular, Riemannian geometry, elementary particle physics, sym metries of differential equations, completely integrable Hamiltonian systems, and spontaneous symmetry breaking. Much ofthe material we have treated is standard and widely available; but we have tried to steer a course between the descriptive approach such as found in Gilmore and Wybourne, and the abstract mathematical approach of Helgason or Jacobson. Gilmore and Wybourne address themselves to the physics community whereas Helgason and Jacobson address themselves to the mathematical community. This book is an attempt to synthesize the two points of view and address both audiences simultaneously. We wanted to present the subject in a way which is at once intuitive, geometric, applications oriented, mathematically rigorous, and accessible to students and researchers without an extensive background in physics, algebra, or geometry.

Compact Lie Groups

Download Compact Lie Groups PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387491589
Total Pages : 208 pages
Book Rating : 4.3/5 (874 download)

DOWNLOAD NOW!


Book Synopsis Compact Lie Groups by : Mark R. Sepanski

Download or read book Compact Lie Groups written by Mark R. Sepanski and published by Springer Science & Business Media. This book was released on 2007-04-05 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Blending algebra, analysis, and topology, the study of compact Lie groups is one of the most beautiful areas of mathematics and a key stepping stone to the theory of general Lie groups. Assuming no prior knowledge of Lie groups, this book covers the structure and representation theory of compact Lie groups. Coverage includes the construction of the Spin groups, Schur Orthogonality, the Peter-Weyl Theorem, the Plancherel Theorem, the Maximal Torus Theorem, the Commutator Theorem, the Weyl Integration and Character Formulas, the Highest Weight Classification, and the Borel-Weil Theorem. The book develops the necessary Lie algebra theory with a streamlined approach focusing on linear Lie groups.

Theory of Lie Groups

Download Theory of Lie Groups PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 9780691049908
Total Pages : 234 pages
Book Rating : 4.0/5 (499 download)

DOWNLOAD NOW!


Book Synopsis Theory of Lie Groups by : Claude Chevalley

Download or read book Theory of Lie Groups written by Claude Chevalley and published by Princeton University Press. This book was released on 2000-01-10 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: This famous book was the first treatise on Lie groups in which a modern point of view was adopted systematically, namely, that a continuous group can be regarded as a global object. To develop this idea to its fullest extent, Chevalley incorporated a broad range of topics, such as the covering spaces of topological spaces, analytic manifolds, integration of complete systems of differential equations on a manifold, and the calculus of exterior differential forms. The book opens with a short description of the classical groups: unitary groups, orthogonal groups, symplectic groups, etc. These special groups are then used to illustrate the general properties of Lie groups, which are considered later. The general notion of a Lie group is defined and correlated with the algebraic notion of a Lie algebra; the subgroups, factor groups, and homomorphisms of Lie groups are studied by making use of the Lie algebra. The last chapter is concerned with the theory of compact groups, culminating in Peter-Weyl's theorem on the existence of representations. Given a compact group, it is shown how one can construct algebraically the corresponding Lie group with complex parameters which appears in the form of a certain algebraic variety (associated algebraic group). This construction is intimately related to the proof of the generalization given by Tannaka of Pontrjagin's duality theorem for Abelian groups. The continued importance of Lie groups in mathematics and theoretical physics make this an indispensable volume for researchers in both fields.

Applications of Lie Groups to Differential Equations

Download Applications of Lie Groups to Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1468402749
Total Pages : 524 pages
Book Rating : 4.4/5 (684 download)

DOWNLOAD NOW!


Book Synopsis Applications of Lie Groups to Differential Equations by : Peter J. Olver

Download or read book Applications of Lie Groups to Differential Equations written by Peter J. Olver and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to explaining a wide range of applications of con tinuous symmetry groups to physically important systems of differential equations. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems. The first chapter collects together (but does not prove) those aspects of Lie group theory which are of importance to differential equations. Applications covered in the body of the book include calculation of symmetry groups of differential equations, integration of ordinary differential equations, including special techniques for Euler-Lagrange equations or Hamiltonian systems, differential invariants and construction of equations with pre scribed symmetry groups, group-invariant solutions of partial differential equations, dimensional analysis, and the connections between conservation laws and symmetry groups. Generalizations of the basic symmetry group concept, and applications to conservation laws, integrability conditions, completely integrable systems and soliton equations, and bi-Hamiltonian systems are covered in detail. The exposition is reasonably self-contained, and supplemented by numerous examples of direct physical importance, chosen from classical mechanics, fluid mechanics, elasticity and other applied areas.

Introduction to Lie Algebras

Download Introduction to Lie Algebras PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1846284902
Total Pages : 254 pages
Book Rating : 4.8/5 (462 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Lie Algebras by : K. Erdmann

Download or read book Introduction to Lie Algebras written by K. Erdmann and published by Springer Science & Business Media. This book was released on 2006-09-28 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lie groups and Lie algebras have become essential to many parts of mathematics and theoretical physics, with Lie algebras a central object of interest in their own right. This book provides an elementary introduction to Lie algebras based on a lecture course given to fourth-year undergraduates. The only prerequisite is some linear algebra and an appendix summarizes the main facts that are needed. The treatment is kept as simple as possible with no attempt at full generality. Numerous worked examples and exercises are provided to test understanding, along with more demanding problems, several of which have solutions. Introduction to Lie Algebras covers the core material required for almost all other work in Lie theory and provides a self-study guide suitable for undergraduate students in their final year and graduate students and researchers in mathematics and theoretical physics.

Lie Groups and Algebraic Groups

Download Lie Groups and Algebraic Groups PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 364274334X
Total Pages : 347 pages
Book Rating : 4.6/5 (427 download)

DOWNLOAD NOW!


Book Synopsis Lie Groups and Algebraic Groups by : Arkadij L. Onishchik

Download or read book Lie Groups and Algebraic Groups written by Arkadij L. Onishchik and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on the notes of the authors' seminar on algebraic and Lie groups held at the Department of Mechanics and Mathematics of Moscow University in 1967/68. Our guiding idea was to present in the most economic way the theory of semisimple Lie groups on the basis of the theory of algebraic groups. Our main sources were A. Borel's paper [34], C. ChevalIey's seminar [14], seminar "Sophus Lie" [15] and monographs by C. Chevalley [4], N. Jacobson [9] and J-P. Serre [16, 17]. In preparing this book we have completely rearranged these notes and added two new chapters: "Lie groups" and "Real semisimple Lie groups". Several traditional topics of Lie algebra theory, however, are left entirely disregarded, e.g. universal enveloping algebras, characters of linear representations and (co)homology of Lie algebras. A distinctive feature of this book is that almost all the material is presented as a sequence of problems, as it had been in the first draft of the seminar's notes. We believe that solving these problems may help the reader to feel the seminar's atmosphere and master the theory. Nevertheless, all the non-trivial ideas, and sometimes solutions, are contained in hints given at the end of each section. The proofs of certain theorems, which we consider more difficult, are given directly in the main text. The book also contains exercises, the majority of which are an essential complement to the main contents.

Emergence of the Theory of Lie Groups

Download Emergence of the Theory of Lie Groups PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461212022
Total Pages : 578 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Emergence of the Theory of Lie Groups by : Thomas Hawkins

Download or read book Emergence of the Theory of Lie Groups written by Thomas Hawkins and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: The great Norwegian mathematician Sophus Lie developed the general theory of transformations in the 1870s, and the first part of the book properly focuses on his work. In the second part the central figure is Wilhelm Killing, who developed structure and classification of semisimple Lie algebras. The third part focuses on the developments of the representation of Lie algebras, in particular the work of Elie Cartan. The book concludes with the work of Hermann Weyl and his contemporaries on the structure and representation of Lie groups which serves to bring together much of the earlier work into a coherent theory while at the same time opening up significant avenues for further work.

Essays in the History of Lie Groups and Algebraic Groups

Download Essays in the History of Lie Groups and Algebraic Groups PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821802887
Total Pages : 184 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Essays in the History of Lie Groups and Algebraic Groups by : Armand Borel

Download or read book Essays in the History of Lie Groups and Algebraic Groups written by Armand Borel and published by American Mathematical Soc.. This book was released on 2001 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic groups and Lie groups are important in most major areas of mathematics, occuring in diverse roles such as the symmetries of differential equations and as central figures in the Langlands program for number theory. In this book, Professor Borel looks at the development of the theory of Lie groups and algebraic groups, highlighting the evolution from the almost purely local theory at the start to the global theory that we know today. As the starting point of this passagefrom local to global, the author takes Lie's theory of local analytic transformation groups and Lie algebras. He then follows the globalization of the process in its two most important frameworks: (transcendental) differential geometry and algebraic geometry. Chapters II to IV are devoted to the former,Chapters V to VIII, to the latter.The essays in the first part of the book survey various proofs of the full reducibility of linear representations of $SL 2M$, the contributions H. Weyl to representation and invariant theory for Lie groups, and conclude with a chapter on E. Cartan's theory of symmetric spaces and Lie groups in the large.The second part of the book starts with Chapter V describing the development of the theory of linear algebraic groups in the 19th century. Many of the main contributions here are due to E. Study, E. Cartan, and above all, to L. Maurer. After being abandoned for nearly 50 years, the theory was revived by Chevalley and Kolchin and then further developed by many others. This is the focus of Chapter VI. The book concludes with two chapters on various aspects of the works of Chevalley on Lie groupsand algebraic groups and Kolchin on algebraic groups and the Galois theory of differential fields.The author brings a unique perspective to this study. As an important developer of some of the modern elements of both the differential geometric and the algebraic geometric sides of the theory, he has a particularly deep appreciation of the underlying mathematics. His lifelong involvement and his historical research in the subject give him a special appreciation of the story of its development.

Lie Groups

Download Lie Groups PDF Online Free

Author :
Publisher : MAA
ISBN 13 : 9780883857595
Total Pages : 194 pages
Book Rating : 4.8/5 (575 download)

DOWNLOAD NOW!


Book Synopsis Lie Groups by : Harriet Suzanne Katcher Pollatsek

Download or read book Lie Groups written by Harriet Suzanne Katcher Pollatsek and published by MAA. This book was released on 2009-09-24 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a complete introduction to Lie groups for undergraduate students. The only prerequisites are multi-variable calculus and linear algebra. The emphasis is placed on the algebraic ideas, with just enough analysis to define the tangent space and the differential and to make sense of the exponential map. This textbook works on the principle that students learn best when they are actively engaged. To this end nearly 200 problems are included in the text, ranging from the routine to the challenging level. Every chapter has a section called 'Putting the pieces together' in which all definitions and results are collected for reference and further reading is suggested.

Structure and Geometry of Lie Groups

Download Structure and Geometry of Lie Groups PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387847944
Total Pages : 742 pages
Book Rating : 4.3/5 (878 download)

DOWNLOAD NOW!


Book Synopsis Structure and Geometry of Lie Groups by : Joachim Hilgert

Download or read book Structure and Geometry of Lie Groups written by Joachim Hilgert and published by Springer Science & Business Media. This book was released on 2011-11-06 with total page 742 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained text is an excellent introduction to Lie groups and their actions on manifolds. The authors start with an elementary discussion of matrix groups, followed by chapters devoted to the basic structure and representation theory of finite dimensinal Lie algebras. They then turn to global issues, demonstrating the key issue of the interplay between differential geometry and Lie theory. Special emphasis is placed on homogeneous spaces and invariant geometric structures. The last section of the book is dedicated to the structure theory of Lie groups. Particularly, they focus on maximal compact subgroups, dense subgroups, complex structures, and linearity. This text is accessible to a broad range of mathematicians and graduate students; it will be useful both as a graduate textbook and as a research reference.

Representations of Compact Lie Groups

Download Representations of Compact Lie Groups PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662129183
Total Pages : 323 pages
Book Rating : 4.6/5 (621 download)

DOWNLOAD NOW!


Book Synopsis Representations of Compact Lie Groups by : T. Bröcker

Download or read book Representations of Compact Lie Groups written by T. Bröcker and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to the representation theory of compact Lie groups follows Herman Weyl’s original approach. It discusses all aspects of finite-dimensional Lie theory, consistently emphasizing the groups themselves. Thus, the presentation is more geometric and analytic than algebraic. It is a useful reference and a source of explicit computations. Each section contains a range of exercises, and 24 figures help illustrate geometric concepts.