Lie Algebraic Methods in Integrable Systems

Download Lie Algebraic Methods in Integrable Systems PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9781584880370
Total Pages : 372 pages
Book Rating : 4.8/5 (83 download)

DOWNLOAD NOW!


Book Synopsis Lie Algebraic Methods in Integrable Systems by : Amit K. Roy-Chowdhury

Download or read book Lie Algebraic Methods in Integrable Systems written by Amit K. Roy-Chowdhury and published by CRC Press. This book was released on 1999-09-28 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last thirty years, the subject of nonlinear integrable systems has grown into a full-fledged research topic. In the last decade, Lie algebraic methods have grown in importance to various fields of theoretical research and worked to establish close relations between apparently unrelated systems. The various ideas associated with Lie algebra and Lie groups can be used to form a particularly elegant approach to the properties of nonlinear systems. In this volume, the author exposes the basic techniques of using Lie algebraic concepts to explore the domain of nonlinear integrable systems. His emphasis is not on developing a rigorous mathematical basis, but on using Lie algebraic methods as an effective tool. The book begins by establishing a practical basis in Lie algebra, including discussions of structure Lie, loop, and Virasor groups, quantum tori and Kac-Moody algebras, and gradation. It then offers a detailed discussion of prolongation structure and its representation theory, the orbit approach-for both finite and infinite dimension Lie algebra. The author also presents the modern approach to symmetries of integrable systems, including important new ideas in symmetry analysis, such as gauge transformations, and the "soldering" approach. He then moves to Hamiltonian structure, where he presents the Drinfeld-Sokolov approach, the Lie algebraic approach, Kupershmidt's approach, Hamiltonian reductions and the Gelfand Dikii formula. He concludes his treatment of Lie algebraic methods with a discussion of the classical r-matrix, its use, and its relations to double Lie algebra and the KP equation.

Lie Algebraic Methods in Integrable Systems

Download Lie Algebraic Methods in Integrable Systems PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000153339
Total Pages : 372 pages
Book Rating : 4.0/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Lie Algebraic Methods in Integrable Systems by : Amit K. Roy-Chowdhury

Download or read book Lie Algebraic Methods in Integrable Systems written by Amit K. Roy-Chowdhury and published by CRC Press. This book was released on 2021-01-04 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last thirty years, the subject of nonlinear integrable systems has grown into a full-fledged research topic. In the last decade, Lie algebraic methods have grown in importance to various fields of theoretical research and worked to establish close relations between apparently unrelated systems. The various ideas associated with Lie algebra and Lie groups can be used to form a particularly elegant approach to the properties of nonlinear systems. In this volume, the author exposes the basic techniques of using Lie algebraic concepts to explore the domain of nonlinear integrable systems. His emphasis is not on developing a rigorous mathematical basis, but on using Lie algebraic methods as an effective tool. The book begins by establishing a practical basis in Lie algebra, including discussions of structure Lie, loop, and Virasor groups, quantum tori and Kac-Moody algebras, and gradation. It then offers a detailed discussion of prolongation structure and its representation theory, the orbit approach-for both finite and infinite dimension Lie algebra. The author also presents the modern approach to symmetries of integrable systems, including important new ideas in symmetry analysis, such as gauge transformations, and the "soldering" approach. He then moves to Hamiltonian structure, where he presents the Drinfeld-Sokolov approach, the Lie algebraic approach, Kupershmidt's approach, Hamiltonian reductions and the Gelfand Dikii formula. He concludes his treatment of Lie algebraic methods with a discussion of the classical r-matrix, its use, and its relations to double Lie algebra and the KP equation.

Algebraic Integrability, Painlevé Geometry and Lie Algebras

Download Algebraic Integrability, Painlevé Geometry and Lie Algebras PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 366205650X
Total Pages : 487 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Integrability, Painlevé Geometry and Lie Algebras by : Mark Adler

Download or read book Algebraic Integrability, Painlevé Geometry and Lie Algebras written by Mark Adler and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Ergebnisse volume is aimed at a wide readership of mathematicians and physicists, graduate students and professionals. The main thrust of the book is to show how algebraic geometry, Lie theory and Painlevé analysis can be used to explicitly solve integrable differential equations and construct the algebraic tori on which they linearize; at the same time, it is, for the student, a playing ground to applying algebraic geometry and Lie theory. The book is meant to be reasonably self-contained and presents numerous examples. The latter appear throughout the text to illustrate the ideas, and make up the core of the last part of the book. The first part of the book contains the basic tools from Lie groups, algebraic and differential geometry to understand the main topic.

Lie Algebraic Methods in Integrable Systems

Download Lie Algebraic Methods in Integrable Systems PDF Online Free

Author :
Publisher : Addison-Wesley Longman Limited
ISBN 13 : 9780582302679
Total Pages : 354 pages
Book Rating : 4.3/5 (26 download)

DOWNLOAD NOW!


Book Synopsis Lie Algebraic Methods in Integrable Systems by : A. Roy Chowdhury

Download or read book Lie Algebraic Methods in Integrable Systems written by A. Roy Chowdhury and published by Addison-Wesley Longman Limited. This book was released on 2000 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Applications of Lie Groups to Differential Equations

Download Applications of Lie Groups to Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1468402749
Total Pages : 524 pages
Book Rating : 4.4/5 (684 download)

DOWNLOAD NOW!


Book Synopsis Applications of Lie Groups to Differential Equations by : Peter J. Olver

Download or read book Applications of Lie Groups to Differential Equations written by Peter J. Olver and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to explaining a wide range of applications of con tinuous symmetry groups to physically important systems of differential equations. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems. The first chapter collects together (but does not prove) those aspects of Lie group theory which are of importance to differential equations. Applications covered in the body of the book include calculation of symmetry groups of differential equations, integration of ordinary differential equations, including special techniques for Euler-Lagrange equations or Hamiltonian systems, differential invariants and construction of equations with pre scribed symmetry groups, group-invariant solutions of partial differential equations, dimensional analysis, and the connections between conservation laws and symmetry groups. Generalizations of the basic symmetry group concept, and applications to conservation laws, integrability conditions, completely integrable systems and soliton equations, and bi-Hamiltonian systems are covered in detail. The exposition is reasonably self-contained, and supplemented by numerous examples of direct physical importance, chosen from classical mechanics, fluid mechanics, elasticity and other applied areas.

Integrable Systems of Classical Mechanics and Lie Algebras Volume I

Download Integrable Systems of Classical Mechanics and Lie Algebras Volume I PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034892578
Total Pages : 312 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Integrable Systems of Classical Mechanics and Lie Algebras Volume I by : PERELOMOV

Download or read book Integrable Systems of Classical Mechanics and Lie Algebras Volume I written by PERELOMOV and published by Birkhäuser. This book was released on 2012-12-06 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a systematic presentation of a variety of methods and results concerning integrable systems of classical mechanics. The investigation of integrable systems was an important line of study in the last century, but up until recently only a small number of examples with two or more degrees of freedom were known. In the last fifteen years however, remarkable progress has been made in this field via the so-called isospectral deformation method which makes extensive use of group-theoretical concepts. The book focuses mainly on the development and applications of this new method, and also gives a fairly complete survey of the older classic results. Chapter 1 contains the necessary background material and outlines the isospectral deformation method in a Lie-algebraic form. Chapter 2 gives an account of numerous previously known integrable systems. Chapter 3 deals with many-body systems of generalized Calogero-Moser type, related to root systems of simple Lie algebras. Chapter 4 is devoted to the Toda lattice and its various modifications seen from the group-theoretic point of view. Chapter 5 investigates some additional topics related to many-body systems. The book will be valuable to students as well as researchers.

Lie Algebras, Geometry, and Toda-Type Systems

Download Lie Algebras, Geometry, and Toda-Type Systems PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521479231
Total Pages : 271 pages
Book Rating : 4.5/5 (214 download)

DOWNLOAD NOW!


Book Synopsis Lie Algebras, Geometry, and Toda-Type Systems by : Alexander Vitalievich Razumov

Download or read book Lie Algebras, Geometry, and Toda-Type Systems written by Alexander Vitalievich Razumov and published by Cambridge University Press. This book was released on 1997-05-15 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book describes integrable Toda type systems and their Lie algebra and differential geometry background.

Introduction to Classical Integrable Systems

Download Introduction to Classical Integrable Systems PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521822671
Total Pages : 622 pages
Book Rating : 4.8/5 (226 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Classical Integrable Systems by : Olivier Babelon

Download or read book Introduction to Classical Integrable Systems written by Olivier Babelon and published by Cambridge University Press. This book was released on 2003-04-17 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough introduction to the theory of classical integrable systems, discussing the various approaches to the subject and explaining their interrelations. The book begins by introducing the central ideas of the theory of integrable systems, based on Lax representations, loop groups and Riemann surfaces. These ideas are then illustrated with detailed studies of model systems. The connection between isomonodromic deformation and integrability is discussed, and integrable field theories are covered in detail. The KP, KdV and Toda hierarchies are explained using the notion of Grassmannian, vertex operators and pseudo-differential operators. A chapter is devoted to the inverse scattering method and three complementary chapters cover the necessary mathematical tools from symplectic geometry, Riemann surfaces and Lie algebras. The book contains many worked examples and is suitable for use as a textbook on graduate courses. It also provides a comprehensive reference for researchers already working in the field.

An Introduction to Lie Groups and Lie Algebras

Download An Introduction to Lie Groups and Lie Algebras PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521889693
Total Pages : 237 pages
Book Rating : 4.5/5 (218 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Lie Groups and Lie Algebras by : Alexander A. Kirillov

Download or read book An Introduction to Lie Groups and Lie Algebras written by Alexander A. Kirillov and published by Cambridge University Press. This book was released on 2008-07-31 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.

Symmetries of Partial Differential Equations

Download Symmetries of Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9400919484
Total Pages : 454 pages
Book Rating : 4.4/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Symmetries of Partial Differential Equations by : A.M. Vinogradov

Download or read book Symmetries of Partial Differential Equations written by A.M. Vinogradov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: 2 The authors of these issues involve not only mathematicians, but also speci alists in (mathematical) physics and computer sciences. So here the reader will find different points of view and approaches to the considered field. A. M. VINOGRADOV 3 Acta Applicandae Mathematicae 15: 3-21, 1989. © 1989 Kluwer Academic Publishers. Symmetries and Conservation Laws of Partial Differential Equations: Basic Notions and Results A. M. VINOORADOV Department of Mathematics, Moscow State University, 117234, Moscow, U. S. S. R. (Received: 22 August 1988) Abstract. The main notions and results which are necessary for finding higher symmetries and conservation laws for general systems of partial differential equations are given. These constitute the starting point for the subsequent papers of this volume. Some problems are also discussed. AMS subject classifications (1980). 35A30, 58005, 58035, 58H05. Key words. Higher symmetries, conservation laws, partial differential equations, infinitely prolonged equations, generating functions. o. Introduction In this paper we present the basic notions and results from the general theory of local symmetries and conservation laws of partial differential equations. More exactly, we will focus our attention on the main conceptual points as well as on the problem of how to find all higher symmetries and conservation laws for a given system of partial differential equations. Also, some general views and perspectives will be discussed.

Reflexing Interfaces: The Complex Coevolution of Information Technology Ecosystems

Download Reflexing Interfaces: The Complex Coevolution of Information Technology Ecosystems PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1599046296
Total Pages : 432 pages
Book Rating : 4.5/5 (99 download)

DOWNLOAD NOW!


Book Synopsis Reflexing Interfaces: The Complex Coevolution of Information Technology Ecosystems by : Orsucci, Franco F.

Download or read book Reflexing Interfaces: The Complex Coevolution of Information Technology Ecosystems written by Orsucci, Franco F. and published by IGI Global. This book was released on 2008-03-31 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book discusses the application of complex theories in information and communication technology, with a focus on the interaction between living systems and information technologies, providing researchers, scholars, and IT professionals with a fundamental resource on such topics as virtual reality; fuzzy logic systems; and complexity science in artificial intelligence, evolutionary computation, neural networks, and 3-D modeling"--Provided by publisher.

Integrable Systems and Algebraic Geometry

Download Integrable Systems and Algebraic Geometry PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108715745
Total Pages : 421 pages
Book Rating : 4.1/5 (87 download)

DOWNLOAD NOW!


Book Synopsis Integrable Systems and Algebraic Geometry by : Ron Donagi

Download or read book Integrable Systems and Algebraic Geometry written by Ron Donagi and published by Cambridge University Press. This book was released on 2020-04-02 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: A collection of articles discussing integrable systems and algebraic geometry from leading researchers in the field.

Computer Algebra in Scientific Computing

Download Computer Algebra in Scientific Computing PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030851656
Total Pages : 485 pages
Book Rating : 4.0/5 (38 download)

DOWNLOAD NOW!


Book Synopsis Computer Algebra in Scientific Computing by : François Boulier

Download or read book Computer Algebra in Scientific Computing written by François Boulier and published by Springer Nature. This book was released on 2021-08-16 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 23rd International Workshop on Computer Algebra in Scientific Computing, CASC 2021, held in Sochi, Russia, in September 2021. The 24 full papers presented together with 1 invited talk were carefully reviewed and selected from 40 submissions. The papers cover theoretical computer algebra and its applications in scientific computing.

Integrable Systems and Algebraic Geometry: Volume 1

Download Integrable Systems and Algebraic Geometry: Volume 1 PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 110880358X
Total Pages : 421 pages
Book Rating : 4.1/5 (88 download)

DOWNLOAD NOW!


Book Synopsis Integrable Systems and Algebraic Geometry: Volume 1 by : Ron Donagi

Download or read book Integrable Systems and Algebraic Geometry: Volume 1 written by Ron Donagi and published by Cambridge University Press. This book was released on 2020-04-02 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: Created as a celebration of mathematical pioneer Emma Previato, this comprehensive book highlights the connections between algebraic geometry and integrable systems, differential equations, mathematical physics, and many other areas. The authors, many of whom have been at the forefront of research into these topics for the last decades, have all been influenced by Previato's research, as her collaborators, students, or colleagues. The diverse articles in the book demonstrate the wide scope of Previato's work and the inclusion of several survey and introductory articles makes the text accessible to graduate students and non-experts, as well as researchers. This first volume covers a wide range of areas related to integrable systems, often emphasizing the deep connections with algebraic geometry. Common themes include theta functions and Abelian varieties, Lax equations, integrable hierarchies, Hamiltonian flows and difference operators. These powerful tools are applied to spinning top, Hitchin, Painleve and many other notable special equations.

Lie Algebras, Part 2

Download Lie Algebras, Part 2 PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080535461
Total Pages : 565 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Lie Algebras, Part 2 by : E.A. de Kerf

Download or read book Lie Algebras, Part 2 written by E.A. de Kerf and published by Elsevier. This book was released on 1997-10-30 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the long awaited follow-up to Lie Algebras, Part I which covered a major part of the theory of Kac-Moody algebras, stressing primarily their mathematical structure. Part II deals mainly with the representations and applications of Lie Algebras and contains many cross references to Part I. The theoretical part largely deals with the representation theory of Lie algebras with a triangular decomposition, of which Kac-Moody algebras and the Virasoro algebra are prime examples. After setting up the general framework of highest weight representations, the book continues to treat topics as the Casimir operator and the Weyl-Kac character formula, which are specific for Kac-Moody algebras. The applications have a wide range. First, the book contains an exposition on the role of finite-dimensional semisimple Lie algebras and their representations in the standard and grand unified models of elementary particle physics. A second application is in the realm of soliton equations and their infinite-dimensional symmetry groups and algebras. The book concludes with a chapter on conformal field theory and the importance of the Virasoro and Kac-Moody algebras therein.

Nonlinear Dynamical Systems Of Mathematical Physics: Spectral And Symplectic Integrability Analysis

Download Nonlinear Dynamical Systems Of Mathematical Physics: Spectral And Symplectic Integrability Analysis PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814462713
Total Pages : 563 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Dynamical Systems Of Mathematical Physics: Spectral And Symplectic Integrability Analysis by : Denis Blackmore

Download or read book Nonlinear Dynamical Systems Of Mathematical Physics: Spectral And Symplectic Integrability Analysis written by Denis Blackmore and published by World Scientific. This book was released on 2011-03-04 with total page 563 pages. Available in PDF, EPUB and Kindle. Book excerpt: This distinctive volume presents a clear, rigorous grounding in modern nonlinear integrable dynamics theory and applications in mathematical physics, and an introduction to timely leading-edge developments in the field — including some innovations by the authors themselves — that have not appeared in any other book.The exposition begins with an introduction to modern integrable dynamical systems theory, treating such topics as Liouville-Arnold and Mischenko-Fomenko integrability. This sets the stage for such topics as new formulations of the gradient-holonomic algorithm for Lax integrability, novel treatments of classical integration by quadratures, Lie-algebraic characterizations of integrability, and recent results on tensor Poisson structures. Of particular note is the development via spectral reduction of a generalized de Rham-Hodge theory, related to Delsarte-Lions operators, leading to new Chern type classes useful for integrability analysis. Also included are elements of quantum mathematics along with applications to Whitham systems, gauge theories, hadronic string models, and a supplement on fundamental differential-geometric concepts making this volume essentially self-contained.This book is ideal as a reference and guide to new directions in research for advanced students and researchers interested in the modern theory and applications of integrable (especially infinite-dimensional) dynamical systems.

Geometric Methods in Physics XXXV

Download Geometric Methods in Physics XXXV PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3319635948
Total Pages : 280 pages
Book Rating : 4.3/5 (196 download)

DOWNLOAD NOW!


Book Synopsis Geometric Methods in Physics XXXV by : Piotr Kielanowski

Download or read book Geometric Methods in Physics XXXV written by Piotr Kielanowski and published by Birkhäuser. This book was released on 2018-02-10 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features a selection of articles based on the XXXV Białowieża Workshop on Geometric Methods in Physics, 2016. The series of Białowieża workshops, attended by a community of experts at the crossroads of mathematics and physics, is a major annual event in the field. The works in this book, based on presentations given at the workshop, are previously unpublished, at the cutting edge of current research, typically grounded in geometry and analysis, and with applications to classical and quantum physics. In 2016 the special session "Integrability and Geometry" in particular attracted pioneers and leading specialists in the field. Traditionally, the Białowieża Workshop is followed by a School on Geometry and Physics, for advanced graduate students and early-career researchers, and the book also includes extended abstracts of the lecture series.