Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Lectures On Vector Bundles Over Riemann Surfaces
Download Lectures On Vector Bundles Over Riemann Surfaces full books in PDF, epub, and Kindle. Read online Lectures On Vector Bundles Over Riemann Surfaces ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Lectures on Vector Bundles over Riemann Surfaces. (MN-6), Volume 6 by : Robert C. Gunning
Download or read book Lectures on Vector Bundles over Riemann Surfaces. (MN-6), Volume 6 written by Robert C. Gunning and published by Princeton University Press. This book was released on 2020-09-01 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: The description for this book, Lectures on Vector Bundles over Riemann Surfaces. (MN-6), Volume 6, will be forthcoming.
Book Synopsis Algebraic Surfaces and Holomorphic Vector Bundles by : Robert Friedman
Download or read book Algebraic Surfaces and Holomorphic Vector Bundles written by Robert Friedman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: A novel feature of the book is its integrated approach to algebraic surface theory and the study of vector bundle theory on both curves and surfaces. While the two subjects remain separate through the first few chapters, they become much more tightly interconnected as the book progresses. Thus vector bundles over curves are studied to understand ruled surfaces, and then reappear in the proof of Bogomolov's inequality for stable bundles, which is itself applied to study canonical embeddings of surfaces via Reider's method. Similarly, ruled and elliptic surfaces are discussed in detail, before the geometry of vector bundles over such surfaces is analysed. Many of the results on vector bundles appear for the first time in book form, backed by many examples, both of surfaces and vector bundles, and over 100 exercises forming an integral part of the text. Aimed at graduates with a thorough first-year course in algebraic geometry, as well as more advanced students and researchers in the areas of algebraic geometry, gauge theory, or 4-manifold topology, many of the results on vector bundles will also be of interest to physicists studying string theory.
Book Synopsis Lectures on Riemann Surfaces by : Otto Forster
Download or read book Lectures on Riemann Surfaces written by Otto Forster and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book grew out of lectures on Riemann surfaces given by Otto Forster at the universities of Munich, Regensburg, and Münster. It provides a concise modern introduction to this rewarding subject, as well as presenting methods used in the study of complex manifolds in the special case of complex dimension one. From the reviews: "This book deserves very serious consideration as a text for anyone contemplating giving a course on Riemann surfaces."—-MATHEMATICAL REVIEWS
Book Synopsis Lectures on Riemann Surfaces by : Maurizio Cornalba
Download or read book Lectures on Riemann Surfaces written by Maurizio Cornalba and published by . This book was released on 1989 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first College on Riemann Surfaces centered on the theory of Riemann surfaces and their moduli and its applications to physics. This volume contains revised versions of the notes distributed at the College.
Book Synopsis Lectures on Vector Bundles by : J. Le Potier
Download or read book Lectures on Vector Bundles written by J. Le Potier and published by Cambridge University Press. This book was released on 1997-01-28 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work consists of two sections on the moduli spaces of vector bundles. The first part tackles the classification of vector bundles on algebraic curves. The author also discusses the construction and elementary properties of the moduli spaces of stable bundles. In particular Le Potier constructs HilbertSHGrothendieck schemes of vector bundles, and treats Mumford's geometric invariant theory. The second part centers on the structure of the moduli space of semistable sheaves on the projective plane. The author sketches existence conditions for sheaves of given rank, and Chern class and construction ideas in the general context of projective algebraic surfaces. Professor Le Potier provides a treatment of vector bundles that will be welcomed by experienced algebraic geometers and novices alike.
Book Synopsis Differential Geometry of Complex Vector Bundles by : Shoshichi Kobayashi
Download or read book Differential Geometry of Complex Vector Bundles written by Shoshichi Kobayashi and published by Princeton University Press. This book was released on 2014-07-14 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: Holomorphic vector bundles have become objects of interest not only to algebraic and differential geometers and complex analysts but also to low dimensional topologists and mathematical physicists working on gauge theory. This book, which grew out of the author's lectures and seminars in Berkeley and Japan, is written for researchers and graduate students in these various fields of mathematics. Originally published in 1987. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Book Synopsis LECTURES ON VECTOR BUNDLES OVER RIEMANN SURFACES- PRELIMINARY INFORMAL NOTES OF UNIVERSITY COURSES AND SEMINARS IN MATHEMATICS. by :
Download or read book LECTURES ON VECTOR BUNDLES OVER RIEMANN SURFACES- PRELIMINARY INFORMAL NOTES OF UNIVERSITY COURSES AND SEMINARS IN MATHEMATICS. written by and published by . This book was released on with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Lectures on Riemann Surfaces by : Robert C. Gunning
Download or read book Lectures on Riemann Surfaces written by Robert C. Gunning and published by Princeton University Press. This book was released on 2015-03-08 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: A sequel to Lectures on Riemann Surfaces (Mathematical Notes, 1966), this volume continues the discussion of the dimensions of spaces of holomorphic cross-sections of complex line bundles over compact Riemann surfaces. Whereas the earlier treatment was limited to results obtainable chiefly by one-dimensional methods, the more detailed analysis presented here requires the use of various properties of Jacobi varieties and of symmetric products of Riemann surfaces, and so serves as a further introduction to these topics as well. The first chapter consists of a rather explicit description of a canonical basis for the Abelian differentials on a marked Riemann surface, and of the description of the canonical meromorphic differentials and the prime function of a marked Riemann surface. Chapter 2 treats Jacobi varieties of compact Riemann surfaces and various subvarieties that arise in determining the dimensions of spaces of holomorphic cross-sections of complex line bundles. In Chapter 3, the author discusses the relations between Jacobi varieties and symmetric products of Riemann surfaces relevant to the determination of dimensions of spaces of holomorphic cross-sections of complex line bundles. The final chapter derives Torelli's theorem following A. Weil, but in an analytical context. Originally published in 1973. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Book Synopsis Riemann Surfaces and Generalized Theta Functions by : Robert C. Gunning
Download or read book Riemann Surfaces and Generalized Theta Functions written by Robert C. Gunning and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: The investigation of the relationships between compact Riemann surfaces (al gebraic curves) and their associated complex tori (Jacobi varieties) has long been basic to the study both of Riemann surfaces and of complex tori. A Riemann surface is naturally imbedded as an analytic submanifold in its associated torus; and various spaces of linear equivalence elasses of divisors on the surface (or equivalently spaces of analytic equivalence elasses of complex line bundies over the surface), elassified according to the dimensions of the associated linear series (or the dimensions of the spaces of analytic cross-sections), are naturally realized as analytic subvarieties of the associated torus. One of the most fruitful of the elassical approaches to this investigation has been by way of theta functions. The space of linear equivalence elasses of positive divisors of order g -1 on a compact connected Riemann surface M of genus g is realized by an irreducible (g -1)-dimensional analytic subvariety, an irreducible hypersurface, of the associated g-dimensional complex torus J(M); this hyper 1 surface W- r;;;, J(M) is the image of the natural mapping Mg- -+J(M), and is g 1 1 birationally equivalent to the (g -1)-fold symmetric product Mg- jSg-l of the Riemann surface M.
Book Synopsis Compact Riemann Surfaces by : R. Narasimhan
Download or read book Compact Riemann Surfaces written by R. Narasimhan and published by Birkhäuser. This book was released on 2012-12-06 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Integrable Systems by : N.J. Hitchin
Download or read book Integrable Systems written by N.J. Hitchin and published by Oxford University Press, USA. This book was released on 2013-03-14 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed to give graduate students an understanding of integrable systems via the study of Riemann surfaces, loop groups, and twistors, this book has its origins in a lecture series given by the internationally renowned authors. Written in an accessible, informal style, it fills a gap in the existing literature.
Book Synopsis Lectures on the Arithmetic Riemann-Roch Theorem. (AM-127), Volume 127 by : Gerd Faltings
Download or read book Lectures on the Arithmetic Riemann-Roch Theorem. (AM-127), Volume 127 written by Gerd Faltings and published by Princeton University Press. This book was released on 2016-03-02 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: The arithmetic Riemann-Roch Theorem has been shown recently by Bismut-Gillet-Soul. The proof mixes algebra, arithmetic, and analysis. The purpose of this book is to give a concise introduction to the necessary techniques, and to present a simplified and extended version of the proof. It should enable mathematicians with a background in arithmetic algebraic geometry to understand some basic techniques in the rapidly evolving field of Arakelov-theory.
Book Synopsis Moduli Spaces of Riemann Surfaces by : Benson Farb
Download or read book Moduli Spaces of Riemann Surfaces written by Benson Farb and published by American Mathematical Soc.. This book was released on 2013-08-16 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mapping class groups and moduli spaces of Riemann surfaces were the topics of the Graduate Summer School at the 2011 IAS/Park City Mathematics Institute. This book presents the nine different lecture series comprising the summer school, covering a selection of topics of current interest. The introductory courses treat mapping class groups and Teichmüller theory. The more advanced courses cover intersection theory on moduli spaces, the dynamics of polygonal billiards and moduli spaces, the stable cohomology of mapping class groups, the structure of Torelli groups, and arithmetic mapping class groups. The courses consist of a set of intensive short lectures offered by leaders in the field, designed to introduce students to exciting, current research in mathematics. These lectures do not duplicate standard courses available elsewhere. The book should be a valuable resource for graduate students and researchers interested in the topology, geometry and dynamics of moduli spaces of Riemann surfaces and related topics. Titles in this series are co-published with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.
Book Synopsis Riemann Surfaces by : Simon Donaldson
Download or read book Riemann Surfaces written by Simon Donaldson and published by Oxford University Press. This book was released on 2011-03-24 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: An authoritative but accessible text on one dimensional complex manifolds or Riemann surfaces. Dealing with the main results on Riemann surfaces from a variety of points of view; it pulls together material from global analysis, topology, and algebraic geometry, and covers the essential mathematical methods and tools.
Book Synopsis Algebraic Curves and Riemann Surfaces by : Rick Miranda
Download or read book Algebraic Curves and Riemann Surfaces written by Rick Miranda and published by American Mathematical Soc.. This book was released on 1995 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking centre stage. But the main examples come fromprojective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Dualtiy Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves andcohomology are introduced as a unifying device in the later chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one term of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-term course in complex variables or a year-long course in algebraic geometry.
Book Synopsis Flat Rank Two Vector Bundles on Genus Two Curves by : Viktoria Heu
Download or read book Flat Rank Two Vector Bundles on Genus Two Curves written by Viktoria Heu and published by American Mathematical Soc.. This book was released on 2019-06-10 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors study the moduli space of trace-free irreducible rank 2 connections over a curve of genus 2 and the forgetful map towards the moduli space of underlying vector bundles (including unstable bundles), for which they compute a natural Lagrangian rational section. As a particularity of the genus case, connections as above are invariant under the hyperelliptic involution: they descend as rank logarithmic connections over the Riemann sphere. The authors establish explicit links between the well-known moduli space of the underlying parabolic bundles with the classical approaches by Narasimhan-Ramanan, Tyurin and Bertram. This allows the authors to explain a certain number of geometric phenomena in the considered moduli spaces such as the classical -configuration of the Kummer surface. The authors also recover a Poincaré family due to Bolognesi on a degree 2 cover of the Narasimhan-Ramanan moduli space. They explicitly compute the Hitchin integrable system on the moduli space of Higgs bundles and compare the Hitchin Hamiltonians with those found by van Geemen-Previato. They explicitly describe the isomonodromic foliation in the moduli space of vector bundles with -connection over curves of genus 2 and prove the transversality of the induced flow with the locus of unstable bundles.
Book Synopsis The Riemann Boundary Problem on Riemann Surfaces by : Y. Rodin
Download or read book The Riemann Boundary Problem on Riemann Surfaces written by Y. Rodin and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van GuIik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.