Lectures on Poisson Geometry

Download Lectures on Poisson Geometry PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470466678
Total Pages : 479 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Poisson Geometry by : Marius Crainic

Download or read book Lectures on Poisson Geometry written by Marius Crainic and published by American Mathematical Soc.. This book was released on 2021-10-14 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: This excellent book will be very useful for students and researchers wishing to learn the basics of Poisson geometry, as well as for those who know something about the subject but wish to update and deepen their knowledge. The authors' philosophy that Poisson geometry is an amalgam of foliation theory, symplectic geometry, and Lie theory enables them to organize the book in a very coherent way. —Alan Weinstein, University of California at Berkeley This well-written book is an excellent starting point for students and researchers who want to learn about the basics of Poisson geometry. The topics covered are fundamental to the theory and avoid any drift into specialized questions; they are illustrated through a large collection of instructive and interesting exercises. The book is ideal as a graduate textbook on the subject, but also for self-study. —Eckhard Meinrenken, University of Toronto

Lectures on Symplectic Geometry

Download Lectures on Symplectic Geometry PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 354045330X
Total Pages : 240 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Symplectic Geometry by : Ana Cannas da Silva

Download or read book Lectures on Symplectic Geometry written by Ana Cannas da Silva and published by Springer. This book was released on 2004-10-27 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.

Lectures on the Geometry of Poisson Manifolds

Download Lectures on the Geometry of Poisson Manifolds PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034884958
Total Pages : 210 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Lectures on the Geometry of Poisson Manifolds by : Izu Vaisman

Download or read book Lectures on the Geometry of Poisson Manifolds written by Izu Vaisman and published by Birkhäuser. This book was released on 2012-12-06 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is addressed to graduate students and researchers in the fields of mathematics and physics who are interested in mathematical and theoretical physics, differential geometry, mechanics, quantization theories and quantum physics, quantum groups etc., and who are familiar with differentiable and symplectic manifolds. The aim of the book is to provide the reader with a monograph that enables him to study systematically basic and advanced material on the recently developed theory of Poisson manifolds, and that also offers ready access to bibliographical references for the continuation of his study. Until now, most of this material was dispersed in research papers published in many journals and languages. The main subjects treated are the Schouten-Nijenhuis bracket; the generalized Frobenius theorem; the basics of Poisson manifolds; Poisson calculus and cohomology; quantization; Poisson morphisms and reduction; realizations of Poisson manifolds by symplectic manifolds and by symplectic groupoids and Poisson-Lie groups. The book unifies terminology and notation. It also reports on some original developments stemming from the author's work, including new results on Poisson cohomology and geometric quantization, cofoliations and biinvariant Poisson structures on Lie groups.

Lectures on Symplectic and Poisson Geometry

Download Lectures on Symplectic and Poisson Geometry PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 96 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Symplectic and Poisson Geometry by : Izu Vaisman

Download or read book Lectures on Symplectic and Poisson Geometry written by Izu Vaisman and published by . This book was released on 2000 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Symplectic, Poisson, and Noncommutative Geometry

Download Symplectic, Poisson, and Noncommutative Geometry PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107056411
Total Pages : 303 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Symplectic, Poisson, and Noncommutative Geometry by : Tohru Eguchi

Download or read book Symplectic, Poisson, and Noncommutative Geometry written by Tohru Eguchi and published by Cambridge University Press. This book was released on 2014-08-25 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains seven chapters based on lectures given by invited speakers at two May 2010 workshops held at the Mathematical Sciences Research Institute.

Lectures on the Geometry of Quantization

Download Lectures on the Geometry of Quantization PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821807989
Total Pages : 150 pages
Book Rating : 4.8/5 (79 download)

DOWNLOAD NOW!


Book Synopsis Lectures on the Geometry of Quantization by : Sean Bates

Download or read book Lectures on the Geometry of Quantization written by Sean Bates and published by American Mathematical Soc.. This book was released on 1997 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes are based on a course entitled ``Symplectic Geometry and Geometric Quantization'' taught by Alan Weinstein at the University of California, Berkeley (fall 1992) and at the Centre Emile Borel (spring 1994). The only prerequisite for the course needed is a knowledge of the basic notions from the theory of differentiable manifolds (differential forms, vector fields, transversality, etc.). The aim is to give students an introduction to the ideas of microlocal analysis and the related symplectic geometry, with an emphasis on the role these ideas play in formalizing the transition between the mathematics of classical dynamics (hamiltonian flows on symplectic manifolds) and quantum mechanics (unitary flows on Hilbert spaces). These notes are meant to function as a guide to the literature. The authors refer to other sources for many details that are omitted and can be bypassed on a first reading.

Poisson Geometry in Mathematics and Physics

Download Poisson Geometry in Mathematics and Physics PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821844237
Total Pages : 330 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Poisson Geometry in Mathematics and Physics by : Giuseppe Dito

Download or read book Poisson Geometry in Mathematics and Physics written by Giuseppe Dito and published by American Mathematical Soc.. This book was released on 2008 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a collection of articles by speakers at the Poisson 2006 conference. The program for Poisson 2006 was an overlap of topics that included deformation quantization, generalized complex structures, differentiable stacks, normal forms, and group-valued moment maps and reduction.

Geometric Models for Noncommutative Algebras

Download Geometric Models for Noncommutative Algebras PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821809525
Total Pages : 202 pages
Book Rating : 4.8/5 (95 download)

DOWNLOAD NOW!


Book Synopsis Geometric Models for Noncommutative Algebras by : Ana Cannas da Silva

Download or read book Geometric Models for Noncommutative Algebras written by Ana Cannas da Silva and published by American Mathematical Soc.. This book was released on 1999 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volume is based on a course, ``Geometric Models for Noncommutative Algebras'' taught by Professor Weinstein at Berkeley. Noncommutative geometry is the study of noncommutative algebras as if they were algebras of functions on spaces, for example, the commutative algebras associated to affine algebraic varieties, differentiable manifolds, topological spaces, and measure spaces. In this work, the authors discuss several types of geometric objects (in the usual sense of sets with structure) that are closely related to noncommutative algebras. Central to the discussion are symplectic and Poisson manifolds, which arise when noncommutative algebras are obtained by deforming commutative algebras. The authors also give a detailed study of groupoids (whose role in noncommutative geometry has been stressed by Connes) as well as of Lie algebroids, the infinitesimal approximations to differentiable groupoids. Featured are many interesting examples, applications, and exercises. The book starts with basic definitions and builds to (still) open questions. It is suitable for use as a graduate text. An extensive bibliography and index are included.

Poisson Structures

Download Poisson Structures PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642310907
Total Pages : 470 pages
Book Rating : 4.6/5 (423 download)

DOWNLOAD NOW!


Book Synopsis Poisson Structures by : Camille Laurent-Gengoux

Download or read book Poisson Structures written by Camille Laurent-Gengoux and published by Springer Science & Business Media. This book was released on 2012-08-27 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Poisson structures appear in a large variety of contexts, ranging from string theory, classical/quantum mechanics and differential geometry to abstract algebra, algebraic geometry and representation theory. In each one of these contexts, it turns out that the Poisson structure is not a theoretical artifact, but a key element which, unsolicited, comes along with the problem that is investigated, and its delicate properties are decisive for the solution to the problem in nearly all cases. Poisson Structures is the first book that offers a comprehensive introduction to the theory, as well as an overview of the different aspects of Poisson structures. The first part covers solid foundations, the central part consists of a detailed exposition of the different known types of Poisson structures and of the (usually mathematical) contexts in which they appear, and the final part is devoted to the two main applications of Poisson structures (integrable systems and deformation quantization). The clear structure of the book makes it adequate for readers who come across Poisson structures in their research or for graduate students or advanced researchers who are interested in an introduction to the many facets and applications of Poisson structures.​

Differential Geometry, Differential Equations, and Mathematical Physics

Download Differential Geometry, Differential Equations, and Mathematical Physics PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030632539
Total Pages : 231 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry, Differential Equations, and Mathematical Physics by : Maria Ulan

Download or read book Differential Geometry, Differential Equations, and Mathematical Physics written by Maria Ulan and published by Springer Nature. This book was released on 2021-02-12 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents lectures given at the Wisła 19 Summer School: Differential Geometry, Differential Equations, and Mathematical Physics, which took place from August 19 - 29th, 2019 in Wisła, Poland, and was organized by the Baltic Institute of Mathematics. The lectures were dedicated to symplectic and Poisson geometry, tractor calculus, and the integration of ordinary differential equations, and are included here as lecture notes comprising the first three chapters. Following this, chapters combine theoretical and applied perspectives to explore topics at the intersection of differential geometry, differential equations, and mathematical physics. Specific topics covered include: Parabolic geometry Geometric methods for solving PDEs in physics, mathematical biology, and mathematical finance Darcy and Euler flows of real gases Differential invariants for fluid and gas flow Differential Geometry, Differential Equations, and Mathematical Physics is ideal for graduate students and researchers working in these areas. A basic understanding of differential geometry is assumed.

Introduction to Symplectic Topology

Download Introduction to Symplectic Topology PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0198794894
Total Pages : 637 pages
Book Rating : 4.1/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Symplectic Topology by : Dusa McDuff

Download or read book Introduction to Symplectic Topology written by Dusa McDuff and published by Oxford University Press. This book was released on 2017 with total page 637 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last number of years powerful new methods in analysis and topology have led to the development of the modern global theory of symplectic topology, including several striking and important results. This new third edition of a classic book in the feild includes updates and new material to bring the material right up-to-date.

Elementary Symplectic Topology and Mechanics

Download Elementary Symplectic Topology and Mechanics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319110268
Total Pages : 237 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Elementary Symplectic Topology and Mechanics by : Franco Cardin

Download or read book Elementary Symplectic Topology and Mechanics written by Franco Cardin and published by Springer. This book was released on 2014-12-01 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a short tract on the essentials of differential and symplectic geometry together with a basic introduction to several applications of this rich framework: analytical mechanics, the calculus of variations, conjugate points & Morse index, and other physical topics. A central feature is the systematic utilization of Lagrangian submanifolds and their Maslov-Hörmander generating functions. Following this line of thought, first introduced by Wlodemierz Tulczyjew, geometric solutions of Hamilton-Jacobi equations, Hamiltonian vector fields and canonical transformations are described by suitable Lagrangian submanifolds belonging to distinct well-defined symplectic structures. This unified point of view has been particularly fruitful in symplectic topology, which is the modern Hamiltonian environment for the calculus of variations, yielding sharp sufficient existence conditions. This line of investigation was initiated by Claude Viterbo in 1992; here, some primary consequences of this theory are exposed in Chapter 8: aspects of Poincaré's last geometric theorem and the Arnol'd conjecture are introduced. In Chapter 7 elements of the global asymptotic treatment of the highly oscillating integrals for the Schrödinger equation are discussed: as is well known, this eventually leads to the theory of Fourier Integral Operators. This short handbook is directed toward graduate students in Mathematics and Physics and to all those who desire a quick introduction to these beautiful subjects.

The Breadth of Symplectic and Poisson Geometry

Download The Breadth of Symplectic and Poisson Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0817644199
Total Pages : 666 pages
Book Rating : 4.8/5 (176 download)

DOWNLOAD NOW!


Book Synopsis The Breadth of Symplectic and Poisson Geometry by : Jerrold E. Marsden

Download or read book The Breadth of Symplectic and Poisson Geometry written by Jerrold E. Marsden and published by Springer Science & Business Media. This book was released on 2007-07-03 with total page 666 pages. Available in PDF, EPUB and Kindle. Book excerpt: * The invited papers in this volume are written in honor of Alan Weinstein, one of the world’s foremost geometers * Contributions cover a broad range of topics in symplectic and differential geometry, Lie theory, mechanics, and related fields * Intended for graduate students and working mathematicians, this text is a distillation of prominent research and an indication of future trends in geometry, mechanics, and mathematical physics

Cluster Algebras and Poisson Geometry

Download Cluster Algebras and Poisson Geometry PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821849727
Total Pages : 264 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Cluster Algebras and Poisson Geometry by : Michael Gekhtman

Download or read book Cluster Algebras and Poisson Geometry written by Michael Gekhtman and published by American Mathematical Soc.. This book was released on 2010 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book devoted to cluster algebras, this work contains chapters on Poisson geometry and Schubert varieties; an introduction to cluster algebras and their main properties; and geometric aspects of the cluster algebra theory, in particular on its relations to Poisson geometry and to the theory of integrable systems.

Symplectic Geometry and Analytical Mechanics

Download Symplectic Geometry and Analytical Mechanics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9400938071
Total Pages : 541 pages
Book Rating : 4.4/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Symplectic Geometry and Analytical Mechanics by : P. Libermann

Download or read book Symplectic Geometry and Analytical Mechanics written by P. Libermann and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: Approach your problems from the right end It isn't that they can't see the solution. and begin with the answers. Then one day, It is that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' Brown 'The point of a Pin'. in R. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thouglit to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sci ences has changed drastically in recent years: measure theory is used (non-trivially) in re gional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homo topy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces.

Hamiltonian Reduction by Stages

Download Hamiltonian Reduction by Stages PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540724702
Total Pages : 527 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Hamiltonian Reduction by Stages by : Jerrold E. Marsden

Download or read book Hamiltonian Reduction by Stages written by Jerrold E. Marsden and published by Springer. This book was released on 2007-06-05 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides a detailed account of the theory of symplectic reduction by stages, along with numerous illustrations of the theory. It gives special emphasis to group extensions, including a detailed discussion of the Euclidean group, the oscillator group, the Bott-Virasoro group and other groups of matrices. The volume also provides ample background theory on symplectic reduction and cotangent bundle reduction.

Solitons and Geometry

Download Solitons and Geometry PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521471961
Total Pages : 92 pages
Book Rating : 4.4/5 (719 download)

DOWNLOAD NOW!


Book Synopsis Solitons and Geometry by : S. P. Novikov

Download or read book Solitons and Geometry written by S. P. Novikov and published by Cambridge University Press. This book was released on 1994-09-15 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an introduction to the geometry of Hamiltonian systems from the modern point of view where the basic structure is a Poisson bracket. Using this approach a mathematical analogue of the famous 'Dirac monopole' is obtained starting from the classical top in a gravity field. This approach is especially useful in physical applications in which a field theory appears; this is the subject of the second part of the lectures, which contains a theory of conservative hydrodynamic-type systems, based on Riemannian geometry, developed over the last decade. The theory has had success in solving problems in physics, such as ones associated with dispersive analogues of shock waves, and its development has led to the introduction of new notions in geometry. The book is based on lectures given by the author in Pisa and which were intended for a non-specialist audience. It provides an introduction from which to proceed to more advanced work in the area.