Lectures on Introduction to Moduli Problems and Orbit Spaces

Download Lectures on Introduction to Moduli Problems and Orbit Spaces PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 366 pages
Book Rating : 4.:/5 (321 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Introduction to Moduli Problems and Orbit Spaces by : P. E. Newstead

Download or read book Lectures on Introduction to Moduli Problems and Orbit Spaces written by P. E. Newstead and published by . This book was released on 1978 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Introduction to Moduli Problems and Orbit Spaces

Download Introduction to Moduli Problems and Orbit Spaces PDF Online Free

Author :
Publisher : Alpha Science International Limited
ISBN 13 : 9788184871623
Total Pages : 166 pages
Book Rating : 4.8/5 (716 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Moduli Problems and Orbit Spaces by : P. E. Newstead

Download or read book Introduction to Moduli Problems and Orbit Spaces written by P. E. Newstead and published by Alpha Science International Limited. This book was released on 2012 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric Invariant Theory (GIT), developed in the 1960s by David Mumford, is the theory of quotients by group actions in Algebraic Geometry. Its principal application is to the construction of various moduli spaces. Peter Newstead gave a series of lectures in 1975 at the Tata Institute of Fundamental Research, Mumbai on GIT and its application to the moduli of vector bundles on curves. It was a masterful yet easy to follow exposition of important material, with clear proofs and many examples. The notes, published as a volume in the TIFR lecture notes series, became a classic, and generations of algebraic geometers working in these subjects got their basic introduction to this area through these lecture notes. Though continuously in demand, these lecture notes have been out of print for many years. The Tata Institute is happy to re-issue these notes in a new print.

Lectures on Introduction to Moduli Problems and Orbit Spaces

Download Lectures on Introduction to Moduli Problems and Orbit Spaces PDF Online Free

Author :
Publisher :
ISBN 13 : 9783540088516
Total Pages : 183 pages
Book Rating : 4.0/5 (885 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Introduction to Moduli Problems and Orbit Spaces by : P. E. Newstead

Download or read book Lectures on Introduction to Moduli Problems and Orbit Spaces written by P. E. Newstead and published by . This book was released on 1978 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Lectures On Riemann Surfaces - Proceedings Of The College On Riemann Surfaces

Download Lectures On Riemann Surfaces - Proceedings Of The College On Riemann Surfaces PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814590878
Total Pages : 716 pages
Book Rating : 4.8/5 (145 download)

DOWNLOAD NOW!


Book Synopsis Lectures On Riemann Surfaces - Proceedings Of The College On Riemann Surfaces by : Maurizio Cornalba

Download or read book Lectures On Riemann Surfaces - Proceedings Of The College On Riemann Surfaces written by Maurizio Cornalba and published by World Scientific. This book was released on 1989-06-01 with total page 716 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Compactifying Moduli Spaces

Download Compactifying Moduli Spaces PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034809212
Total Pages : 141 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Compactifying Moduli Spaces by : Paul Hacking

Download or read book Compactifying Moduli Spaces written by Paul Hacking and published by Birkhäuser. This book was released on 2016-02-04 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focusses on a large class of objects in moduli theory and provides different perspectives from which compactifications of moduli spaces may be investigated. Three contributions give an insight on particular aspects of moduli problems. In the first of them, various ways to construct and compactify moduli spaces are presented. In the second, some questions on the boundary of moduli spaces of surfaces are addressed. Finally, the theory of stable quotients is explained, which yields meaningful compactifications of moduli spaces of maps. Both advanced graduate students and researchers in algebraic geometry will find this book a valuable read.

Lectures on Invariant Theory

Download Lectures on Invariant Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521525480
Total Pages : 244 pages
Book Rating : 4.5/5 (254 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Invariant Theory by : Igor Dolgachev

Download or read book Lectures on Invariant Theory written by Igor Dolgachev and published by Cambridge University Press. This book was released on 2003-08-07 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary goal of this 2003 book is to give a brief introduction to the main ideas of algebraic and geometric invariant theory. It assumes only a minimal background in algebraic geometry, algebra and representation theory. Topics covered include the symbolic method for computation of invariants on the space of homogeneous forms, the problem of finite-generatedness of the algebra of invariants, the theory of covariants and constructions of categorical and geometric quotients. Throughout, the emphasis is on concrete examples which originate in classical algebraic geometry. Based on lectures given at University of Michigan, Harvard University and Seoul National University, the book is written in an accessible style and contains many examples and exercises. A novel feature of the book is a discussion of possible linearizations of actions and the variation of quotients under the change of linearization. Also includes the construction of toric varieties as torus quotients of affine spaces.

Berkeley Lectures on P-adic Geometry

Download Berkeley Lectures on P-adic Geometry PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691202095
Total Pages : 260 pages
Book Rating : 4.6/5 (912 download)

DOWNLOAD NOW!


Book Synopsis Berkeley Lectures on P-adic Geometry by : Peter Scholze

Download or read book Berkeley Lectures on P-adic Geometry written by Peter Scholze and published by Princeton University Press. This book was released on 2020-05-26 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Berkeley Lectures on p-adic Geometry presents an important breakthrough in arithmetic geometry. In 2014, leading mathematician Peter Scholze delivered a series of lectures at the University of California, Berkeley, on new ideas in the theory of p-adic geometry. Building on his discovery of perfectoid spaces, Scholze introduced the concept of “diamonds,” which are to perfectoid spaces what algebraic spaces are to schemes. The introduction of diamonds, along with the development of a mixed-characteristic shtuka, set the stage for a critical advance in the discipline. In this book, Peter Scholze and Jared Weinstein show that the moduli space of mixed-characteristic shtukas is a diamond, raising the possibility of using the cohomology of such spaces to attack the Langlands conjectures for a reductive group over a p-adic field. This book follows the informal style of the original Berkeley lectures, with one chapter per lecture. It explores p-adic and perfectoid spaces before laying out the newer theory of shtukas and their moduli spaces. Points of contact with other threads of the subject, including p-divisible groups, p-adic Hodge theory, and Rapoport-Zink spaces, are thoroughly explained. Berkeley Lectures on p-adic Geometry will be a useful resource for students and scholars working in arithmetic geometry and number theory.

Algebraic Cycles, Sheaves, Shtukas, and Moduli

Download Algebraic Cycles, Sheaves, Shtukas, and Moduli PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3764385375
Total Pages : 240 pages
Book Rating : 4.7/5 (643 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Cycles, Sheaves, Shtukas, and Moduli by : Piotr Pragacz

Download or read book Algebraic Cycles, Sheaves, Shtukas, and Moduli written by Piotr Pragacz and published by Springer Science & Business Media. This book was released on 2008-03-12 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Articles examine the contributions of the great mathematician J. M. Hoene-Wronski. Although much of his work was dismissed during his lifetime, it is now recognized that his work offers valuable insight into the nature of mathematics. The book begins with elementary-level discussions and ends with discussions of current research. Most of the material has never been published before, offering fresh perspectives on Hoene-Wronski’s contributions.

Moduli Spaces and Vector Bundles

Download Moduli Spaces and Vector Bundles PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139480049
Total Pages : 506 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Moduli Spaces and Vector Bundles by : Leticia Brambila-Paz

Download or read book Moduli Spaces and Vector Bundles written by Leticia Brambila-Paz and published by Cambridge University Press. This book was released on 2009-05-21 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vector bundles and their associated moduli spaces are of fundamental importance in algebraic geometry. In recent decades this subject has been greatly enhanced by its relationships with other areas of mathematics, including differential geometry, topology and even theoretical physics, specifically gauge theory, quantum field theory and string theory. Peter E. Newstead has been a leading figure in this field almost from its inception and has made many seminal contributions to our understanding of moduli spaces of stable bundles. This volume has been assembled in tribute to Professor Newstead and his contribution to algebraic geometry. Some of the subject's leading experts cover foundational material, while the survey and research papers focus on topics at the forefront of the field. This volume is suitable for both graduate students and more experienced researchers.

Lectures on Field Theory and Topology

Download Lectures on Field Theory and Topology PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470452065
Total Pages : 202 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Field Theory and Topology by : Daniel S. Freed

Download or read book Lectures on Field Theory and Topology written by Daniel S. Freed and published by American Mathematical Soc.. This book was released on 2019-08-23 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: These lectures recount an application of stable homotopy theory to a concrete problem in low energy physics: the classification of special phases of matter. While the joint work of the author and Michael Hopkins is a focal point, a general geometric frame of reference on quantum field theory is emphasized. Early lectures describe the geometric axiom systems introduced by Graeme Segal and Michael Atiyah in the late 1980s, as well as subsequent extensions. This material provides an entry point for mathematicians to delve into quantum field theory. Classification theorems in low dimensions are proved to illustrate the framework. The later lectures turn to more specialized topics in field theory, including the relationship between invertible field theories and stable homotopy theory, extended unitarity, anomalies, and relativistic free fermion systems. The accompanying mathematical explanations touch upon (higher) category theory, duals to the sphere spectrum, equivariant spectra, differential cohomology, and Dirac operators. The outcome of computations made using the Adams spectral sequence is presented and compared to results in the condensed matter literature obtained by very different means. The general perspectives and specific applications fuse into a compelling story at the interface of contemporary mathematics and theoretical physics.

An Introduction to Invariants and Moduli

Download An Introduction to Invariants and Moduli PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521809061
Total Pages : 528 pages
Book Rating : 4.8/5 (9 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Invariants and Moduli by : Shigeru Mukai

Download or read book An Introduction to Invariants and Moduli written by Shigeru Mukai and published by Cambridge University Press. This book was released on 2003-09-08 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sample Text

The Geometry of Moduli Spaces of Sheaves

Download The Geometry of Moduli Spaces of Sheaves PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139485822
Total Pages : 345 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis The Geometry of Moduli Spaces of Sheaves by : Daniel Huybrechts

Download or read book The Geometry of Moduli Spaces of Sheaves written by Daniel Huybrechts and published by Cambridge University Press. This book was released on 2010-05-27 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edition has been updated to reflect recent advances in the theory of semistable coherent sheaves and their moduli spaces. The authors review changes in the field and point the reader towards further literature. An ideal text for graduate students or mathematicians with a background in algebraic geometry.

Algebraic Threefolds

Download Algebraic Threefolds PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540393420
Total Pages : 322 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Threefolds by : Alberto Conte

Download or read book Algebraic Threefolds written by Alberto Conte and published by Springer. This book was released on 2006-11-17 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Lectures on Symplectic Geometry

Download Lectures on Symplectic Geometry PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 354045330X
Total Pages : 240 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Symplectic Geometry by : Ana Cannas da Silva

Download or read book Lectures on Symplectic Geometry written by Ana Cannas da Silva and published by Springer. This book was released on 2004-10-27 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.

The Moduli Space of Curves

Download The Moduli Space of Curves PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780817637842
Total Pages : 584 pages
Book Rating : 4.6/5 (378 download)

DOWNLOAD NOW!


Book Synopsis The Moduli Space of Curves by : R. Dijkgraaf

Download or read book The Moduli Space of Curves written by R. Dijkgraaf and published by Springer Science & Business Media. This book was released on 1995-10-18 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: The moduli space Mg of curves of fixed genus g – that is, the algebraic variety that parametrizes all curves of genus g – is one of the most intriguing objects of study in algebraic geometry these days. Its appeal results not only from its beautiful mathematical structure but also from recent developments in theoretical physics, in particular in conformal field theory. Leading experts in the field explore in this volume both the structure of the moduli space of curves and its relationship with physics through quantum cohomology. Altogether, this is a lively volume that testifies to the ferment in the field and gives an excellent view of the state of the art for both mathematicians and theoretical physicists. It is a persuasive example of the famous Wignes comment, and its converse, on "the unreasonable effectiveness of mathematics in the natural science." Witteen’s conjecture in 1990 describing the intersection behavior of tautological classes in the cohomology of Mg arose directly from string theory. Shortly thereafter a stunning proof was provided by Kontsevich who, in this volume, describes his solution to the problem of counting rational curves on certain algebraic varieties and includes numerous suggestions for further development. The same problem is given an elegant treatment in a paper by Manin. There follows a number of contributions to the geometry, cohomology, and arithmetic of the moduli spaces of curves. In addition, several contributors address quantum cohomology and conformal field theory.

Symplectic 4-Manifolds and Algebraic Surfaces

Download Symplectic 4-Manifolds and Algebraic Surfaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540782788
Total Pages : 363 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Symplectic 4-Manifolds and Algebraic Surfaces by : Denis Auroux

Download or read book Symplectic 4-Manifolds and Algebraic Surfaces written by Denis Auroux and published by Springer Science & Business Media. This book was released on 2008-04-17 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern approaches to the study of symplectic 4-manifolds and algebraic surfaces combine a wide range of techniques and sources of inspiration. Gauge theory, symplectic geometry, pseudoholomorphic curves, singularity theory, moduli spaces, braid groups, monodromy, in addition to classical topology and algebraic geometry, combine to make this one of the most vibrant and active areas of research in mathematics. It is our hope that the five lectures of the present volume given at the C.I.M.E. Summer School held in Cetraro, Italy, September 2-10, 2003 will be useful to people working in related areas of mathematics and will become standard references on these topics. The volume is a coherent exposition of an active field of current research focusing on the introduction of new methods for the study of moduli spaces of complex structures on algebraic surfaces, and for the investigation of symplectic topology in dimension 4 and higher.

Lectures on K3 Surfaces

Download Lectures on K3 Surfaces PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316797252
Total Pages : 499 pages
Book Rating : 4.3/5 (167 download)

DOWNLOAD NOW!


Book Synopsis Lectures on K3 Surfaces by : Daniel Huybrechts

Download or read book Lectures on K3 Surfaces written by Daniel Huybrechts and published by Cambridge University Press. This book was released on 2016-09-26 with total page 499 pages. Available in PDF, EPUB and Kindle. Book excerpt: K3 surfaces are central objects in modern algebraic geometry. This book examines this important class of Calabi–Yau manifolds from various perspectives in eighteen self-contained chapters. It starts with the basics and guides the reader to recent breakthroughs, such as the proof of the Tate conjecture for K3 surfaces and structural results on Chow groups. Powerful general techniques are introduced to study the many facets of K3 surfaces, including arithmetic, homological, and differential geometric aspects. In this context, the book covers Hodge structures, moduli spaces, periods, derived categories, birational techniques, Chow rings, and deformation theory. Famous open conjectures, for example the conjectures of Calabi, Weil, and Artin–Tate, are discussed in general and for K3 surfaces in particular, and each chapter ends with questions and open problems. Based on lectures at the advanced graduate level, this book is suitable for courses and as a reference for researchers.