Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Lectures On Fibre Bundles And Differential Geometry
Download Lectures On Fibre Bundles And Differential Geometry full books in PDF, epub, and Kindle. Read online Lectures On Fibre Bundles And Differential Geometry ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Lectures on Fibre Bundles and Differential Geometry by : Jean Louis Koszul
Download or read book Lectures on Fibre Bundles and Differential Geometry written by Jean Louis Koszul and published by . This book was released on 1986 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Introduction to Fibre Bundles by : Richard Dawson Porter
Download or read book Introduction to Fibre Bundles written by Richard Dawson Porter and published by . This book was released on 1977 with total page 708 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Lectures on Fibre Bundles and Differential Geometry by : J. L. Koszul
Download or read book Lectures on Fibre Bundles and Differential Geometry written by J. L. Koszul and published by . This book was released on 1960 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Differential Geometry of Complex Vector Bundles by : Shoshichi Kobayashi
Download or read book Differential Geometry of Complex Vector Bundles written by Shoshichi Kobayashi and published by Princeton University Press. This book was released on 2014-07-14 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: Holomorphic vector bundles have become objects of interest not only to algebraic and differential geometers and complex analysts but also to low dimensional topologists and mathematical physicists working on gauge theory. This book, which grew out of the author's lectures and seminars in Berkeley and Japan, is written for researchers and graduate students in these various fields of mathematics. Originally published in 1987. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Book Synopsis Modern Differential Geometry for Physicists by : Chris J. Isham
Download or read book Modern Differential Geometry for Physicists written by Chris J. Isham and published by Allied Publishers. This book was released on 2002 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Lectures On Advanced Mathematical Methods For Physicists by : N Mukunda
Download or read book Lectures On Advanced Mathematical Methods For Physicists written by N Mukunda and published by World Scientific. This book was released on 2010-04-27 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a survey of Topology and Differential Geometry and also, Lie Groups and Algebras, and their Representations. The first topic is indispensable to students of gravitation and related areas of modern physics (including string theory), while the second has applications in gauge theory and particle physics, integrable systems and nuclear physics.Part I provides a simple introduction to basic topology, followed by a survey of homotopy. Calculus of differentiable manifolds is then developed, and a Riemannian metric is introduced along with the key concepts of connections and curvature. The final chapters lay out the basic notions of simplicial homology and de Rham cohomology as well as fibre bundles, particularly tangent and cotangent bundles.Part II starts with a review of group theory, followed by the basics of representation theory. A thorough description of Lie groups and algebras is presented with their structure constants and linear representations. Root systems and their classifications are detailed, and this section of the book concludes with the description of representations of simple Lie algebras, emphasizing spinor representations of orthogonal and pseudo-orthogonal groups.The style of presentation is succinct and precise. Involved mathematical proofs that are not of primary importance to physics student are omitted. The book aims to provide the reader access to a wide variety of sources in the current literature, in addition to being a textbook of advanced mathematical methods for physicists.
Book Synopsis Lectures on Fibre Bundles and Differential Geometry by : Jean Louis Koszul
Download or read book Lectures on Fibre Bundles and Differential Geometry written by Jean Louis Koszul and published by . This book was released on 1960 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Applicable Differential Geometry by : M. Crampin
Download or read book Applicable Differential Geometry written by M. Crampin and published by Cambridge University Press. This book was released on 1986 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to geometrical topics used in applied mathematics and theoretical physics.
Book Synopsis Lectures On Differential Geometry by : Weihuan Chen
Download or read book Lectures On Differential Geometry written by Weihuan Chen and published by World Scientific Publishing Company. This book was released on 1999-11-30 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a translation of an authoritative introductory text based on a lecture series delivered by the renowned differential geometer, Professor S S Chern in Beijing University in 1980. The original Chinese text, authored by Professor Chern and Professor Wei-Huan Chen, was a unique contribution to the mathematics literature, combining simplicity and economy of approach with depth of contents. The present translation is aimed at a wide audience, including (but not limited to) advanced undergraduate and graduate students in mathematics, as well as physicists interested in the diverse applications of differential geometry to physics. In addition to a thorough treatment of the fundamentals of manifold theory, exterior algebra, the exterior calculus, connections on fiber bundles, Riemannian geometry, Lie groups and moving frames, and complex manifolds (with a succinct introduction to the theory of Chern classes), and an appendix on the relationship between differential geometry and theoretical physics, this book includes a new chapter on Finsler geometry and a new appendix on the history and recent developments of differential geometry, the latter prepared specially for this edition by Professor Chern to bring the text into perspectives.
Book Synopsis Differential Geometry by : Loring W. Tu
Download or read book Differential Geometry written by Loring W. Tu and published by Springer. This book was released on 2017-06-01 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.
Book Synopsis Differential Geometry For Physicists by : Bo-yu Hou
Download or read book Differential Geometry For Physicists written by Bo-yu Hou and published by World Scientific Publishing Company. This book was released on 1997-10-31 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is divided into fourteen chapters, with 18 appendices as introduction to prerequisite topological and algebraic knowledge, etc. The first seven chapters focus on local analysis. This part can be used as a fundamental textbook for graduate students of theoretical physics. Chapters 8-10 discuss geometry on fibre bundles, which facilitates further reference for researchers. The last four chapters deal with the Atiyah-Singer index theorem, its generalization and its application, quantum anomaly, cohomology field theory and noncommutative geometry, giving the reader a glimpse of the frontier of current research in theoretical physics.
Book Synopsis Characteristic Classes by : John Willard Milnor
Download or read book Characteristic Classes written by John Willard Milnor and published by Princeton University Press. This book was released on 1974 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of characteristic classes provides a meeting ground for the various disciplines of differential topology, differential and algebraic geometry, cohomology, and fiber bundle theory. As such, it is a fundamental and an essential tool in the study of differentiable manifolds. In this volume, the authors provide a thorough introduction to characteristic classes, with detailed studies of Stiefel-Whitney classes, Chern classes, Pontrjagin classes, and the Euler class. Three appendices cover the basics of cohomology theory and the differential forms approach to characteristic classes, and provide an account of Bernoulli numbers. Based on lecture notes of John Milnor, which first appeared at Princeton University in 1957 and have been widely studied by graduate students of topology ever since, this published version has been completely revised and corrected.
Book Synopsis Natural Operations in Differential Geometry by : Ivan Kolar
Download or read book Natural Operations in Differential Geometry written by Ivan Kolar and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this work is threefold: First it should be a monographical work on natural bundles and natural op erators in differential geometry. This is a field which every differential geometer has met several times, but which is not treated in detail in one place. Let us explain a little, what we mean by naturality. Exterior derivative commutes with the pullback of differential forms. In the background of this statement are the following general concepts. The vector bundle A kT* M is in fact the value of a functor, which associates a bundle over M to each manifold M and a vector bundle homomorphism over f to each local diffeomorphism f between manifolds of the same dimension. This is a simple example of the concept of a natural bundle. The fact that exterior derivative d transforms sections of A kT* M into sections of A k+1T* M for every manifold M can be expressed by saying that d is an operator from A kT* M into A k+1T* M.
Book Synopsis Analysis and Algebra on Differentiable Manifolds: A Workbook for Students and Teachers by : P.M. Gadea
Download or read book Analysis and Algebra on Differentiable Manifolds: A Workbook for Students and Teachers written by P.M. Gadea and published by Springer Science & Business Media. This book was released on 2009-12-12 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: A famous Swiss professor gave a student’s course in Basel on Riemann surfaces. After a couple of lectures, a student asked him, “Professor, you have as yet not given an exact de nition of a Riemann surface.” The professor answered, “With Riemann surfaces, the main thing is to UNDERSTAND them, not to de ne them.” The student’s objection was reasonable. From a formal viewpoint, it is of course necessary to start as soon as possible with strict de nitions, but the professor’s - swer also has a substantial background. The pure de nition of a Riemann surface— as a complex 1-dimensional complex analytic manifold—contributes little to a true understanding. It takes a long time to really be familiar with what a Riemann s- face is. This example is typical for the objects of global analysis—manifolds with str- tures. There are complex concrete de nitions but these do not automatically explain what they really are, what we can do with them, which operations they really admit, how rigid they are. Hence, there arises the natural question—how to attain a deeper understanding? One well-known way to gain an understanding is through underpinning the d- nitions, theorems and constructions with hierarchies of examples, counterexamples and exercises. Their choice, construction and logical order is for any teacher in global analysis an interesting, important and fun creating task.
Book Synopsis Geometry of Differential Forms by : Shigeyuki Morita
Download or read book Geometry of Differential Forms written by Shigeyuki Morita and published by American Mathematical Soc.. This book was released on 2001 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the times of Gauss, Riemann, and Poincare, one of the principal goals of the study of manifolds has been to relate local analytic properties of a manifold with its global topological properties. Among the high points on this route are the Gauss-Bonnet formula, the de Rham complex, and the Hodge theorem; these results show, in particular, that the central tool in reaching the main goal of global analysis is the theory of differential forms. The book by Morita is a comprehensive introduction to differential forms. It begins with a quick introduction to the notion of differentiable manifolds and then develops basic properties of differential forms as well as fundamental results concerning them, such as the de Rham and Frobenius theorems. The second half of the book is devoted to more advanced material, including Laplacians and harmonic forms on manifolds, the concepts of vector bundles and fiber bundles, and the theory of characteristic classes. Among the less traditional topics treated is a detailed description of the Chern-Weil theory. The book can serve as a textbook for undergraduate students and for graduate students in geometry.
Download or read book Fibre Bundles written by D. Husemöller and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: The notion of a fibre bundle first arose out of questions posed in the 1930s on the topology and geometry of manifolds. By the year 1950 the defini tion of fibre bundle had been clearly formulated, the homotopy classifica tion of fibre bundles achieved, and the theory of characteristic classes of fibre bundles developed by several mathematicians, Chern, Pontrjagin, Stiefel, and Whitney. Steenrod's book, which appeared in 1950, gave a coherent treatment of the subject up to that time. About 1955 Milnor gave a construction of a universal fibre bundle for any topological group. This construction is also included in Part I along with an elementary proof that the bundle is universal. During the five years from 1950 to 1955, Hirzebruch clarified the notion of characteristic class and used it to prove a general Riemann-Roch theorem for algebraic varieties. This was published in his Ergebnisse Monograph. A systematic development of characteristic classes and their applications to manifolds is given in Part III and is based on the approach of Hirze bruch as modified by Grothendieck.
Book Synopsis New Developments in Differential Geometry, Budapest 1996 by : J. Szenthe
Download or read book New Developments in Differential Geometry, Budapest 1996 written by J. Szenthe and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the Conference on Differential Geometry, Budapest, Hungary, July 27-30, 1996