Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Least Squares Variational Principles And The Finite Element Method
Download Least Squares Variational Principles And The Finite Element Method full books in PDF, epub, and Kindle. Read online Least Squares Variational Principles And The Finite Element Method ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Least-Squares Finite Element Methods by : Pavel B. Bochev
Download or read book Least-Squares Finite Element Methods written by Pavel B. Bochev and published by Springer Science & Business Media. This book was released on 2009-04-28 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since their emergence, finite element methods have taken a place as one of the most versatile and powerful methodologies for the approximate numerical solution of Partial Differential Equations. These methods are used in incompressible fluid flow, heat, transfer, and other problems. This book provides researchers and practitioners with a concise guide to the theory and practice of least-square finite element methods, their strengths and weaknesses, established successes, and open problems.
Book Synopsis Constructive Aspects of Functional Analysis by : Giuseppe Geymonat
Download or read book Constructive Aspects of Functional Analysis written by Giuseppe Geymonat and published by Springer Science & Business Media. This book was released on 2011-06-21 with total page 848 pages. Available in PDF, EPUB and Kindle. Book excerpt: A. Balakrishnan: A constructive approach to optimal control.- R. Glowinski: Méthodes itératives duales pour la minimisation de fonctionnelles convexes.- J.L. Lions: Approximation numérique des inéquations d’évolution.- G. Marchuk: Introduction to the methods of numerical analysis.- U. Mosco: An introduction to the approximate solution of variational inequalities.- I. Singer: Best approximation in normed linear spaces.- G. Strang: A Fourier analysis of the finite element variational method.- M. Zerner: Caractéristiques d’approximation des compacts dans les espaces fonctionnels et problèmes aux limites elliptiques.
Book Synopsis The Least-Squares Finite Element Method by : Bo-nan Jiang
Download or read book The Least-Squares Finite Element Method written by Bo-nan Jiang and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first monograph on the subject, providing a comprehensive introduction to the LSFEM method for numerical solution of PDEs. LSFEM is simple, efficient and robust, and can solve a wide range of problems in fluid dynamics and electromagnetics.
Book Synopsis The Method of Weighted Residuals and Variational Principles by : Bruce A. Finlayson
Download or read book The Method of Weighted Residuals and Variational Principles written by Bruce A. Finlayson and published by SIAM. This book was released on 2013-12-30 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic book covers the solution of differential equations in science and engineering in such as way as to provide an introduction for novices before progressing toward increasingly more difficult problems. The Method of Weighted Residuals and Variational Principles describes variational principles, including how to find them and how to use them to construct error bounds and create stationary principles. The book also illustrates how to use simple methods to find approximate solutions, shows how to use the finite element method for more complex problems, and provides detailed information on error bounds. Problem sets make this book ideal for self-study or as a course text.
Book Synopsis The Finite Element Method Set by : O. C. Zienkiewicz
Download or read book The Finite Element Method Set written by O. C. Zienkiewicz and published by Elsevier. This book was released on 2005-11-25 with total page 1863 pages. Available in PDF, EPUB and Kindle. Book excerpt: The sixth editions of these seminal books deliver the most up to date and comprehensive reference yet on the finite element method for all engineers and mathematicians. Renowned for their scope, range and authority, the new editions have been significantly developed in terms of both contents and scope. Each book is now complete in its own right and provides self-contained reference; used together they provide a formidable resource covering the theory and the application of the universally used FEM. Written by the leading professors in their fields, the three books cover the basis of the method, its application to solid mechanics and to fluid dynamics.* This is THE classic finite element method set, by two the subject's leading authors * FEM is a constantly developing subject, and any professional or student of engineering involved in understanding the computational modelling of physical systems will inevitably use the techniques in these books * Fully up-to-date; ideal for teaching and reference
Book Synopsis Energy Principles and Variational Methods in Applied Mechanics by : J. N. Reddy
Download or read book Energy Principles and Variational Methods in Applied Mechanics written by J. N. Reddy and published by John Wiley & Sons. This book was released on 2017-07-21 with total page 1069 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide to using energy principles and variational methods for solving problems in solid mechanics This book provides a systematic, highly practical introduction to the use of energy principles, traditional variational methods, and the finite element method for the solution of engineering problems involving bars, beams, torsion, plane elasticity, trusses, and plates. It begins with a review of the basic equations of mechanics, the concepts of work and energy, and key topics from variational calculus. It presents virtual work and energy principles, energy methods of solid and structural mechanics, Hamilton’s principle for dynamical systems, and classical variational methods of approximation. And it takes a more unified approach than that found in most solid mechanics books, to introduce the finite element method. Featuring more than 200 illustrations and tables, this Third Edition has been extensively reorganized and contains much new material, including a new chapter devoted to the latest developments in functionally graded beams and plates. Offers clear and easy-to-follow descriptions of the concepts of work, energy, energy principles and variational methods Covers energy principles of solid and structural mechanics, traditional variational methods, the least-squares variational method, and the finite element, along with applications for each Provides an abundance of examples, in a problem-solving format, with descriptions of applications for equations derived in obtaining solutions to engineering structures Features end-of-the-chapter problems for course assignments, a Companion Website with a Solutions Manual, Instructor's Manual, figures, and more Energy Principles and Variational Methods in Applied Mechanics, Third Edition is both a superb text/reference for engineering students in aerospace, civil, mechanical, and applied mechanics, and a valuable working resource for engineers in design and analysis in the aircraft, automobile, civil engineering, and shipbuilding industries.
Book Synopsis The Finite Element Method: Theory, Implementation, and Applications by : Mats G. Larson
Download or read book The Finite Element Method: Theory, Implementation, and Applications written by Mats G. Larson and published by Springer Science & Business Media. This book was released on 2013-01-13 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox. We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.
Book Synopsis The Finite Element Method: Its Basis and Fundamentals by : O. C. Zienkiewicz
Download or read book The Finite Element Method: Its Basis and Fundamentals written by O. C. Zienkiewicz and published by Butterworth-Heinemann. This book was released on 2013-08-31 with total page 753 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Finite Element Method: Its Basis and Fundamentals offers a complete introduction to the basis of the finite element method, covering fundamental theory and worked examples in the detail required for readers to apply the knowledge to their own engineering problems and understand more advanced applications. This edition sees a significant rearrangement of the book's content to enable clearer development of the finite element method, with major new chapters and sections added to cover: - Weak forms - Variational forms - Multi-dimensional field problems - Automatic mesh generation - Plate bending and shells - Developments in meshless techniques Focusing on the core knowledge, mathematical and analytical tools needed for successful application, The Finite Element Method: Its Basis and Fundamentals is the authoritative resource of choice for graduate level students, researchers and professional engineers involved in finite element-based engineering analysis. - A proven keystone reference in the library of any engineer needing to understand and apply the finite element method in design and development - Founded by an influential pioneer in the field and updated in this seventh edition by an author team incorporating academic authority and industrial simulation experience - Features reworked and reordered contents for clearer development of the theory, plus new chapters and sections on mesh generation, plate bending, shells, weak forms and variational forms
Book Synopsis Advances in Bridge Maintenance, Safety Management, and Life-Cycle Performance, Set of Book & CD-ROM by : Paulo J. da Sousa Cruz
Download or read book Advances in Bridge Maintenance, Safety Management, and Life-Cycle Performance, Set of Book & CD-ROM written by Paulo J. da Sousa Cruz and published by CRC Press. This book was released on 2015-03-02 with total page 1120 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in bridge maintenance, safety, management and life-cycle performance contains the papers presented at IABMAS'06, the Third International Conference of the International Association for Bridge Maintenance and Safety (IABMAS), held in Porto, Portugal from 16 to 19 July, 2006.All major aspects of bridge maintenance, management, safety, and co
Book Synopsis Advances in Computational Methods in Sciences and Engineering 2005 (2 vols) by : Theodore Simos
Download or read book Advances in Computational Methods in Sciences and Engineering 2005 (2 vols) written by Theodore Simos and published by CRC Press. This book was released on 2022-05-04 with total page 1107 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume brings together selected contributed papers presented at the International Conference of Computational Methods in Science and Engineering (ICCMSE 2005), held in Greece, 21 aEURO" 26 October 2005. The conference aims to bring together computational scientists from several disciplines in order to share methods and ideas. The ICCMSE is unique in its kind. It regroups original contributions from all fields of the traditional Sciences, Mathematics, Physics, Chemistry, Biology, Medicine and all branches of Engineering. It would be perhaps more appropriate to define the ICCMSE as a conference on computational science and its applications to science and engineering. Topics of general interest are: Computational Mathematics, Theoretical Physics and Theoretical Chemistry. Computational Engineering and Mechanics, Computational Biology and Medicine, Computational Geosciences and Meteorology, Computational Economics and Finance, Scientific Computation. High Performance Computing, Parallel and Distributed Computing, Visualization, Problem Solving Environments, Numerical Algorithms, Modelling and Simulation of Complex System, Web-based Simulation and Computing, Grid-based Simulation and Computing, Fuzzy Logic, Hybrid Computational Methods, Data Mining, Information Retrieval and Virtual Reality, Reliable Computing, Image Processing, Computational Science and Education etc. More than 800 extended abstracts have been submitted for consideration for presentation in ICCMSE 2005. From these 500 have been selected after international peer review by at least two independent reviewers.
Book Synopsis The Finite Element Method in Structural Mechanics by : Gangan Prathap
Download or read book The Finite Element Method in Structural Mechanics written by Gangan Prathap and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is not intended to be a text-book, delineating the full scope of finite element methodology, nor is it a comprehensive handbook of modern finite element practice for the finite element engineer. There are enough books that serve to do these and more. It is however intended as a monograph or treatise on a very specific area - the design of robust and accurate elements for applications in struc tural mechanics. It attempts to describe the epistemological conflict between the principles in finite element technology that can be described as Art and those that have a scientific basis invested in it and which can be admitted as science as the subject evolved and came to be accepted. The principles of structural mechanics as a branch of physics are well founded and have a sound scientific basis. The mathematical description of it has also a long history and is rigorously based on the infinitesimal and variational calculus. Of much more recent origin has been the branch of knowledge dealing with the numerical modelling of the beha viour of structural material. The most powerful method available to do this today is the finite element method. It is eminently suited to carry out the entire cycle of design and analysis of a structural configuration on a digital computer.
Book Synopsis Chemical Reactor Modeling by : Hugo A. Jakobsen
Download or read book Chemical Reactor Modeling written by Hugo A. Jakobsen and published by Springer Science & Business Media. This book was released on 2014-04-02 with total page 1589 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chemical Reactor Modeling closes the gap between Chemical Reaction Engineering and Fluid Mechanics. The second edition consists of two volumes: Volume 1: Fundamentals. Volume 2: Chemical Engineering Applications In volume 1 most of the fundamental theory is presented. A few numerical model simulation application examples are given to elucidate the link between theory and applications. In volume 2 the chemical reactor equipment to be modeled are described. Several engineering models are introduced and discussed. A survey of the frequently used numerical methods, algorithms and schemes is provided. A few practical engineering applications of the modeling tools are presented and discussed. The working principles of several experimental techniques employed in order to get data for model validation are outlined. The monograph is based on lectures regularly taught in the fourth and fifth years graduate courses in transport phenomena and chemical reactor modeling and in a post graduate course in modern reactor modeling at the Norwegian University of Science and Technology, Department of Chemical Engineering, Trondheim, Norway. The objective of the book is to present the fundamentals of the single-fluid and multi-fluid models for the analysis of single and multiphase reactive flows in chemical reactors with a chemical reactor engineering rather than mathematical bias. Organized into 13 chapters, it combines theoretical aspects and practical applications and covers some of the recent research in several areas of chemical reactor engineering. This book contains a survey of the modern literature in the field of chemical reactor modeling.
Book Synopsis Partial Differential Equations by : D. Sloan
Download or read book Partial Differential Equations written by D. Sloan and published by Elsevier. This book was released on 2012-12-02 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: /homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! Over the second half of the 20th century the subject area loosely referred to as numerical analysis of partial differential equations (PDEs) has undergone unprecedented development. At its practical end, the vigorous growth and steady diversification of the field were stimulated by the demand for accurate and reliable tools for computational modelling in physical sciences and engineering, and by the rapid development of computer hardware and architecture. At the more theoretical end, the analytical insight into the underlying stability and accuracy properties of computational algorithms for PDEs was deepened by building upon recent progress in mathematical analysis and in the theory of PDEs. To embark on a comprehensive review of the field of numerical analysis of partial differential equations within a single volume of this journal would have been an impossible task. Indeed, the 16 contributions included here, by some of the foremost world authorities in the subject, represent only a small sample of the major developments. We hope that these articles will, nevertheless, provide the reader with a stimulating glimpse into this diverse, exciting and important field. The opening paper by Thomée reviews the history of numerical analysis of PDEs, starting with the 1928 paper by Courant, Friedrichs and Lewy on the solution of problems of mathematical physics by means of finite differences. This excellent survey takes the reader through the development of finite differences for elliptic problems from the 1930s, and the intense study of finite differences for general initial value problems during the 1950s and 1960s. The formulation of the concept of stability is explored in the Lax equivalence theorem and the Kreiss matrix lemmas. Reference is made to the introduction of the finite element method by structural engineers, and a description is given of the subsequent development and mathematical analysis of the finite element method with piecewise polynomial approximating functions. The penultimate section of Thomée's survey deals with `other classes of approximation methods', and this covers methods such as collocation methods, spectral methods, finite volume methods and boundary integral methods. The final section is devoted to numerical linear algebra for elliptic problems. The next three papers, by Bialecki and Fairweather, Hesthaven and Gottlieb and Dahmen, describe, respectively, spline collocation methods, spectral methods and wavelet methods. The work by Bialecki and Fairweather is a comprehensive overview of orthogonal spline collocation from its first appearance to the latest mathematical developments and applications. The emphasis throughout is on problems in two space dimensions. The paper by Hesthaven and Gottlieb presents a review of Fourier and Chebyshev pseudospectral methods for the solution of hyperbolic PDEs. Particular emphasis is placed on the treatment of boundaries, stability of time discretisations, treatment of non-smooth solutions and multidomain techniques. The paper gives a clear view of the advances that have been made over the last decade in solving hyperbolic problems by means of spectral methods, but it shows that many critical issues remain open. The paper by Dahmen reviews the recent rapid growth in the use of wavelet methods for PDEs. The author focuses on the use of adaptivity, where significant successes have recently been achieved. He describes the potential weaknesses of wavelet methods as well as the perceived strengths, thus giving a balanced view that should encourage the study of wavelet methods.
Book Synopsis Real-time PDE-constrained Optimization by : Lorenz T. Biegler
Download or read book Real-time PDE-constrained Optimization written by Lorenz T. Biegler and published by SIAM. This book was released on 2007-01-01 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many engineering and scientific problems in design, control, and parameter estimation can be formulated as optimization problems that are governed by partial differential equations (PDEs). The complexities of the PDEs--and the requirement for rapid solution--pose significant difficulties. A particularly challenging class of PDE-constrained optimization problems is characterized by the need for real-time solution, i.e., in time scales that are sufficiently rapid to support simulation-based decision making. Real-Time PDE-Constrained Optimization, the first book devoted to real-time optimization for systems governed by PDEs, focuses on new formulations, methods, and algorithms needed to facilitate real-time, PDE-constrained optimization. In addition to presenting state-of-the-art algorithms and formulations, the text illustrates these algorithms with a diverse set of applications that includes problems in the areas of aerodynamics, biology, fluid dynamics, medicine, chemical processes, homeland security, and structural dynamics. Audience: readers who have expertise in simulation and are interested in incorporating optimization into their simulations, who have expertise in numerical optimization and are interested in adapting optimization methods to the class of infinite-dimensional simulation problems, or who have worked in "offline" optimization contexts and are interested in moving to "online" optimization.
Book Synopsis Handbook of Numerical Methods for Hyperbolic Problems by : Remi Abgrall
Download or read book Handbook of Numerical Methods for Hyperbolic Problems written by Remi Abgrall and published by Elsevier. This book was released on 2016-11-17 with total page 668 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Numerical Methods for Hyperbolic Problems explores the changes that have taken place in the past few decades regarding literature in the design, analysis and application of various numerical algorithms for solving hyperbolic equations. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and readily understand their relative advantages and limitations. - Provides detailed, cutting-edge background explanations of existing algorithms and their analysis - Ideal for readers working on the theoretical aspects of algorithm development and its numerical analysis - Presents a method of different algorithms for specific applications and the relative advantages and limitations of different algorithms for engineers or readers involved in applications - Written by leading subject experts in each field who provide breadth and depth of content coverage
Book Synopsis The Mathematics of Finite Elements and Applications by : J. R. Whiteman
Download or read book The Mathematics of Finite Elements and Applications written by J. R. Whiteman and published by Academic Press. This book was released on 2014-05-10 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Mathematics of Finite Elements and Applications provides information pertinent to the mathematics of finite elements, applications, algorithms, and computational techniques. This book discusses the developments in the mathematics of finite elements. Organized into 32 chapters, this book begins with an overview of the basis of the finite element process as a general approximation tool. This text then examines the methods for obtaining bounds on the errors in finite element solutions to two-dimensional elliptic boundary value problems defined on simply connected polygonal regions. Other chapters consider the practical implementation of the Galerkin and the Rayleigh–Ritz methods to equations of importance to physics and engineering. This book discusses as well a fundamental investigation into the problem of convergence in the finite element method. The final chapter deals with an algorithm that is applicable to the analysis of arbitrary plane stress or plane strain configurations. This book is a valuable resource for numerical analysts, mathematical physicist, applied mathematicians, computer scientists, and engineers.
Book Synopsis Summaries of Projects Completed in Fiscal Year ... by :
Download or read book Summaries of Projects Completed in Fiscal Year ... written by and published by . This book was released on with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: