Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Least Squares Optimization In Multivariate Analysis
Download Least Squares Optimization In Multivariate Analysis full books in PDF, epub, and Kindle. Read online Least Squares Optimization In Multivariate Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis The Total Least Squares Problem by : Sabine Van Huffel
Download or read book The Total Least Squares Problem written by Sabine Van Huffel and published by SIAM. This book was released on 1991-01-01 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book devoted entirely to total least squares. The authors give a unified presentation of the TLS problem. A description of its basic principles are given, the various algebraic, statistical and sensitivity properties of the problem are discussed, and generalizations are presented. Applications are surveyed to facilitate uses in an even wider range of applications. Whenever possible, comparison is made with the well-known least squares methods. A basic knowledge of numerical linear algebra, matrix computations, and some notion of elementary statistics is required of the reader; however, some background material is included to make the book reasonably self-contained.
Book Synopsis Discovering Partial Least Squares with JMP by : Ian Cox
Download or read book Discovering Partial Least Squares with JMP written by Ian Cox and published by SAS Institute. This book was released on 2013-10 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using JMP statistical discovery software from SAS, Discovering Partial Least Squares with JMP explores Partial Least Squares and positions it within the more general context of multivariate analysis. This book motivates current and potential users of JMP to extend their analytical repertoire by embracing PLS. Dynamically interacting with JMP, you will develop confidence as you explore underlying concepts and work through the examples. The authors provide background and guidance to support and empower you on this journey.
Book Synopsis Econometric Methods with Applications in Business and Economics by : Christiaan Heij
Download or read book Econometric Methods with Applications in Business and Economics written by Christiaan Heij and published by OUP Oxford. This book was released on 2004-03-25 with total page 1132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nowadays applied work in business and economics requires a solid understanding of econometric methods to support decision-making. Combining a solid exposition of econometric methods with an application-oriented approach, this rigorous textbook provides students with a working understanding and hands-on experience of current econometrics. Taking a 'learning by doing' approach, it covers basic econometric methods (statistics, simple and multiple regression, nonlinear regression, maximum likelihood, and generalized method of moments), and addresses the creative process of model building with due attention to diagnostic testing and model improvement. Its last part is devoted to two major application areas: the econometrics of choice data (logit and probit, multinomial and ordered choice, truncated and censored data, and duration data) and the econometrics of time series data (univariate time series, trends, volatility, vector autoregressions, and a brief discussion of SUR models, panel data, and simultaneous equations). · Real-world text examples and practical exercise questions stimulate active learning and show how econometrics can solve practical questions in modern business and economic management. · Focuses on the core of econometrics, regression, and covers two major advanced topics, choice data with applications in marketing and micro-economics, and time series data with applications in finance and macro-economics. · Learning-support features include concise, manageable sections of text, frequent cross-references to related and background material, summaries, computational schemes, keyword lists, suggested further reading, exercise sets, and online data sets and solutions. · Derivations and theory exercises are clearly marked for students in advanced courses. This textbook is perfect for advanced undergraduate students, new graduate students, and applied researchers in econometrics, business, and economics, and for researchers in other fields that draw on modern applied econometrics.
Book Synopsis Matrix-Based Introduction to Multivariate Data Analysis by : Kohei Adachi
Download or read book Matrix-Based Introduction to Multivariate Data Analysis written by Kohei Adachi and published by Springer Nature. This book was released on 2020-05-20 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first textbook that allows readers who may be unfamiliar with matrices to understand a variety of multivariate analysis procedures in matrix forms. By explaining which models underlie particular procedures and what objective function is optimized to fit the model to the data, it enables readers to rapidly comprehend multivariate data analysis. Arranged so that readers can intuitively grasp the purposes for which multivariate analysis procedures are used, the book also offers clear explanations of those purposes, with numerical examples preceding the mathematical descriptions. Supporting the modern matrix formulations by highlighting singular value decomposition among theorems in matrix algebra, this book is useful for undergraduate students who have already learned introductory statistics, as well as for graduate students and researchers who are not familiar with matrix-intensive formulations of multivariate data analysis. The book begins by explaining fundamental matrix operations and the matrix expressions of elementary statistics. Then, it offers an introduction to popular multivariate procedures, with each chapter featuring increasing advanced levels of matrix algebra. Further the book includes in six chapters on advanced procedures, covering advanced matrix operations and recently proposed multivariate procedures, such as sparse estimation, together with a clear explication of the differences between principal components and factor analyses solutions. In a nutshell, this book allows readers to gain an understanding of the latest developments in multivariate data science.
Book Synopsis Alternative Methods of Regression by : David Birkes
Download or read book Alternative Methods of Regression written by David Birkes and published by John Wiley & Sons. This book was released on 2011-09-20 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: Of related interest. Nonlinear Regression Analysis and its Applications Douglas M. Bates and Donald G. Watts ".an extraordinary presentation of concepts and methods concerning the use and analysis of nonlinear regression models.highly recommend[ed].for anyone needing to use and/or understand issues concerning the analysis of nonlinear regression models." --Technometrics This book provides a balance between theory and practice supported by extensive displays of instructive geometrical constructs. Numerous in-depth case studies illustrate the use of nonlinear regression analysis--with all data sets real. Topics include: multi-response parameter estimation; models defined by systems of differential equations; and improved methods for presenting inferential results of nonlinear analysis. 1988 (0-471-81643-4) 365 pp. Nonlinear Regression G. A. F. Seber and C. J. Wild ".[a] comprehensive and scholarly work.impressively thorough with attention given to every aspect of the modeling process." --Short Book Reviews of the International Statistical Institute In this introduction to nonlinear modeling, the authors examine a wide range of estimation techniques including least squares, quasi-likelihood, and Bayesian methods, and discuss some of the problems associated with estimation. The book presents new and important material relating to the concept of curvature and its growing role in statistical inference. It also covers three useful classes of models --growth, compartmental, and multiphase --and emphasizes the limitations involved in fitting these models. Packed with examples and graphs, it offers statisticians, statistical consultants, and statistically oriented research scientists up-to-date access to their fields. 1989 (0-471-61760-1) 768 pp. Mathematical Programming in Statistics T. S. Arthanari and Yadolah Dodge "The authors have achieved their stated intention.in an outstanding and useful manner for both students and researchers.Contains a superb synthesis of references linked to the special topics and formulations by a succinct set of bibliographical notes.Should be in the hands of all system analysts and computer system architects." --Computing Reviews This unique book brings together most of the available results on applications of mathematical programming in statistics, and also develops the necessary statistical and programming theory and methods. 1981 (0-471-08073-X) 413 pp.
Book Synopsis Data Analysis Using the Method of Least Squares by : John Wolberg
Download or read book Data Analysis Using the Method of Least Squares written by John Wolberg and published by Springer Science & Business Media. This book was released on 2006-02-08 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: Develops the full power of the least-squares method Enables engineers and scientists to apply the method to their specific problem Deals with linear as well as with non-linear least-squares, parametric as well as non-parametric methods
Book Synopsis Multivariate Data Analysis on Matrix Manifolds by : Nickolay Trendafilov
Download or read book Multivariate Data Analysis on Matrix Manifolds written by Nickolay Trendafilov and published by Springer Nature. This book was released on 2021-09-15 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level textbook aims to give a unified presentation and solution of several commonly used techniques for multivariate data analysis (MDA). Unlike similar texts, it treats the MDA problems as optimization problems on matrix manifolds defined by the MDA model parameters, allowing them to be solved using (free) optimization software Manopt. The book includes numerous in-text examples as well as Manopt codes and software guides, which can be applied directly or used as templates for solving similar and new problems. The first two chapters provide an overview and essential background for studying MDA, giving basic information and notations. Next, it considers several sets of matrices routinely used in MDA as parameter spaces, along with their basic topological properties. A brief introduction to matrix (Riemannian) manifolds and optimization methods on them with Manopt complete the MDA prerequisite. The remaining chapters study individual MDA techniques in depth. The number of exercises complement the main text with additional information and occasionally involve open and/or challenging research questions. Suitable fields include computational statistics, data analysis, data mining and data science, as well as theoretical computer science, machine learning and optimization. It is assumed that the readers have some familiarity with MDA and some experience with matrix analysis, computing, and optimization.
Book Synopsis New Developments in Classification and Data Analysis by : Maurizio Vichi
Download or read book New Developments in Classification and Data Analysis written by Maurizio Vichi and published by Springer Science & Business Media. This book was released on 2006-05-06 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains revised versions of selected papers presented during the biannual meeting of the Classification and Data Analysis Group of SocietA Italiana di Statistica, which was held in Bologna, September 22-24, 2003. The scientific program of the conference included 80 contributed papers. Moreover it was possible to recruit six internationally renowned invited spe- ers for plenary talks on their current research works regarding the core topics of IFCS (the International Federation of Classification Societies) and Wo- gang Gaul and the colleagues of the GfKl organized a session. Thus, the conference provided a large number of scientists and experts from home and abroad with an attractive forum for discussions and mutual exchange of knowledge. The talks in the different sessions focused on methodological developments in supervised and unsupervised classification and in data analysis, also p- viding relevant contributions in the context of applications. This suggested the presentation of the 43 selected papers in three parts as follows: CLASSIFICATION AND CLUSTERING Non parametric classification Clustering and dissimilarities MULTIVARIATE STATISTICS AND DATA ANALYSIS APPLIED MULTIVARIATE STATISTICS Environmental data Microarray data Behavioural and text data Financial data We wish to express our gratitude to the authors whose enthusiastic p- ticipation made the meeting possible. We are very grateful to the reviewers for the time spent in their professional reviewing work. We would also like to extend our thanks to the chairpersons and discussants of the sessions: their comments and suggestions proved very stimulating both for the authors and the audience.
Book Synopsis Multivariate Analysis in the Pharmaceutical Industry by : Ana Patricia Ferreira
Download or read book Multivariate Analysis in the Pharmaceutical Industry written by Ana Patricia Ferreira and published by Academic Press. This book was released on 2018-04-24 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multivariate Analysis in the Pharmaceutical Industry provides industry practitioners with guidance on multivariate data methods and their applications over the lifecycle of a pharmaceutical product, from process development, to routine manufacturing, focusing on the challenges specific to each step. It includes an overview of regulatory guidance specific to the use of these methods, along with perspectives on the applications of these methods that allow for testing, monitoring and controlling products and processes. The book seeks to put multivariate analysis into a pharmaceutical context for the benefit of pharmaceutical practitioners, potential practitioners, managers and regulators. Users will find a resources that addresses an unmet need on how pharmaceutical industry professionals can extract value from data that is routinely collected on products and processes, especially as these techniques become more widely used, and ultimately, expected by regulators. - Targets pharmaceutical industry practitioners and regulatory staff by addressing industry specific challenges - Includes case studies from different pharmaceutical companies and across product lifecycle of to introduce readers to the breadth of applications - Contains information on the current regulatory framework which will shape how multivariate analysis (MVA) is used in years to come
Book Synopsis Least-squares Approximation by : Open University. Linear Mathematics Course Team
Download or read book Least-squares Approximation written by Open University. Linear Mathematics Course Team and published by . This book was released on 1972 with total page 52 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Multi-way Analysis written by Age Smilde and published by John Wiley & Sons. This book was released on 2005-06-10 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the field of multi-way analysis for chemists and chemometricians. Its emphasis is on the ideas behind the method and its pratical applications. Sufficient mathematical background is given to provide a solid understanding of the ideas behind the method. There are currently no other books on the market which deal with this method from the viewpoint of its applications in chemistry. Applicable in many areas of chemistry. No comparable volume currently available. The field is becoming increasingly important.
Book Synopsis Data-Driven Fault Detection and Reasoning for Industrial Monitoring by : Jing Wang
Download or read book Data-Driven Fault Detection and Reasoning for Industrial Monitoring written by Jing Wang and published by Springer Nature. This book was released on 2022-01-03 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book assesses the potential of data-driven methods in industrial process monitoring engineering. The process modeling, fault detection, classification, isolation, and reasoning are studied in detail. These methods can be used to improve the safety and reliability of industrial processes. Fault diagnosis, including fault detection and reasoning, has attracted engineers and scientists from various fields such as control, machinery, mathematics, and automation engineering. Combining the diagnosis algorithms and application cases, this book establishes a basic framework for this topic and implements various statistical analysis methods for process monitoring. This book is intended for senior undergraduate and graduate students who are interested in fault diagnosis technology, researchers investigating automation and industrial security, professional practitioners and engineers working on engineering modeling and data processing applications. This is an open access book.
Book Synopsis A Companion to Theoretical Econometrics by : Badi H. Baltagi
Download or read book A Companion to Theoretical Econometrics written by Badi H. Baltagi and published by John Wiley & Sons. This book was released on 2008-04-15 with total page 736 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Companion to Theoretical Econometrics provides a comprehensive reference to the basics of econometrics. This companion focuses on the foundations of the field and at the same time integrates popular topics often encountered by practitioners. The chapters are written by international experts and provide up-to-date research in areas not usually covered by standard econometric texts. Focuses on the foundations of econometrics. Integrates real-world topics encountered by professionals and practitioners. Draws on up-to-date research in areas not covered by standard econometrics texts. Organized to provide clear, accessible information and point to further readings.
Book Synopsis The SAGE Handbook of Quantitative Methods in Psychology by : Roger E Millsap
Download or read book The SAGE Handbook of Quantitative Methods in Psychology written by Roger E Millsap and published by SAGE. This book was released on 2009-07-23 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: `I often... wonder to myself whether the field needs another book, handbook, or encyclopedia on this topic. In this case I think that the answer is truly yes. The handbook is well focused on important issues in the field, and the chapters are written by recognized authorities in their fields. The book should appeal to anyone who wants an understanding of important topics that frequently go uncovered in graduate education in psychology′ - David C Howell, Professor Emeritus, University of Vermont Quantitative psychology is arguably one of the oldest disciplines within the field of psychology and nearly all psychologists are exposed to quantitative psychology in some form. While textbooks in statistics, research methods and psychological measurement exist, none offer a unified treatment of quantitative psychology. The SAGE Handbook of Quantitative Methods in Psychology does just that. Each chapter covers a methodological topic with equal attention paid to established theory and the challenges facing methodologists as they address new research questions using that particular methodology. The reader will come away from each chapter with a greater understanding of the methodology being addressed as well as an understanding of the directions for future developments within that methodological area. Drawing on a global scholarship, the Handbook is divided into seven parts: Part One: Design and Inference: addresses issues in the inference of causal relations from experimental and non-experimental research, along with the design of true experiments and quasi-experiments, and the problem of missing data due to various influences such as attrition or non-compliance. Part Two: Measurement Theory: begins with a chapter on classical test theory, followed by the common factor analysis model as a model for psychological measurement. The models for continuous latent variables in item-response theory are covered next, followed by a chapter on discrete latent variable models as represented in latent class analysis. Part Three: Scaling Methods: covers metric and non-metric scaling methods as developed in multidimensional scaling, followed by consideration of the scaling of discrete measures as found in dual scaling and correspondence analysis. Models for preference data such as those found in random utility theory are covered next. Part Four: Data Analysis: includes chapters on regression models, categorical data analysis, multilevel or hierarchical models, resampling methods, robust data analysis, meta-analysis, Bayesian data analysis, and cluster analysis. Part Five: Structural Equation Models: addresses topics in general structural equation modeling, nonlinear structural equation models, mixture models, and multilevel structural equation models. Part Six: Longitudinal Models: covers the analysis of longitudinal data via mixed modeling, time series analysis and event history analysis. Part Seven: Specialized Models: covers specific topics including the analysis of neuro-imaging data and functional data-analysis.
Book Synopsis Applied Univariate, Bivariate, and Multivariate Statistics Using Python by : Daniel J. Denis
Download or read book Applied Univariate, Bivariate, and Multivariate Statistics Using Python written by Daniel J. Denis and published by John Wiley & Sons. This book was released on 2021-05-11 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Univariate, Bivariate, and Multivariate Statistics Using Python A practical, “how-to” reference for anyone performing essential statistical analyses and data management tasks in Python Applied Univariate, Bivariate, and Multivariate Statistics Using Python delivers a comprehensive introduction to a wide range of statistical methods performed using Python in a single, one-stop reference. The book contains user-friendly guidance and instructions on using Python to run a variety of statistical procedures without getting bogged down in unnecessary theory. Throughout, the author emphasizes a set of computational tools used in the discovery of empirical patterns, as well as several popular statistical analyses and data management tasks that can be immediately applied. Most of the datasets used in the book are small enough to be easily entered into Python manually, though they can also be downloaded for free from www.datapsyc.com. Only minimal knowledge of statistics is assumed, making the book perfect for those seeking an easily accessible toolkit for statistical analysis with Python. Applied Univariate, Bivariate, and Multivariate Statistics Using Python represents the fastest way to learn how to analyze data with Python. Readers will also benefit from the inclusion of: A review of essential statistical principles, including types of data, measurement, significance tests, significance levels, and type I and type II errors An introduction to Python, exploring how to communicate with Python A treatment of exploratory data analysis, basic statistics and visual displays, including frequencies and descriptives, q-q plots, box-and-whisker plots, and data management An introduction to topics such as ANOVA, MANOVA and discriminant analysis, regression, principal components analysis, factor analysis, cluster analysis, among others, exploring the nature of what these techniques can vs. cannot do on a methodological level Perfect for undergraduate and graduate students in the social, behavioral, and natural sciences, Applied Univariate, Bivariate, and Multivariate Statistics Using Python will also earn a place in the libraries of researchers and data analysts seeking a quick go-to resource for univariate, bivariate, and multivariate analysis in Python.
Book Synopsis Constrained Principal Component Analysis and Related Techniques by : Yoshio Takane
Download or read book Constrained Principal Component Analysis and Related Techniques written by Yoshio Takane and published by CRC Press. This book was released on 2016-04-19 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: In multivariate data analysis, regression techniques predict one set of variables from another while principal component analysis (PCA) finds a subspace of minimal dimensionality that captures the largest variability in the data. How can regression analysis and PCA be combined in a beneficial way? Why and when is it a good idea to combine them? Wha
Book Synopsis Introduction to Applied Linear Algebra by : Stephen Boyd
Download or read book Introduction to Applied Linear Algebra written by Stephen Boyd and published by Cambridge University Press. This book was released on 2018-06-07 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.