Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Learning Object Recognition Strategies
Download Learning Object Recognition Strategies full books in PDF, epub, and Kindle. Read online Learning Object Recognition Strategies ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Shape, Contour and Grouping in Computer Vision by : David A. Forsyth
Download or read book Shape, Contour and Grouping in Computer Vision written by David A. Forsyth and published by Springer Science & Business Media. This book was released on 1999-11-03 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer vision has been successful in several important applications recently. Vision techniques can now be used to build very good models of buildings from pictures quickly and easily, to overlay operation planning data on a neuros- geon’s view of a patient, and to recognise some of the gestures a user makes to a computer. Object recognition remains a very di cult problem, however. The key questions to understand in recognition seem to be: (1) how objects should be represented and (2) how to manage the line of reasoning that stretches from image data to object identity. An important part of the process of recognition { perhaps, almost all of it { involves assembling bits of image information into helpful groups. There is a wide variety of possible criteria by which these groups could be established { a set of edge points that has a symmetry could be one useful group; others might be a collection of pixels shaded in a particular way, or a set of pixels with coherent colour or texture. Discussing this process of grouping requires a detailed understanding of the relationship between what is seen in the image and what is actually out there in the world.
Book Synopsis Biologically Motivated Computer Vision by : Seong-Whang Lee
Download or read book Biologically Motivated Computer Vision written by Seong-Whang Lee and published by Springer. This book was released on 2003-07-31 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is our great pleasure and honor to organize the First IEEE Computer Society International Workshop on Biologically Motivated Computer Vision (BMCV 2000). The workshop BMCV 2000 aims to facilitate debates on biologically motivated vision systems and to provide an opportunity for researchers in the area of vision to see and share the latest developments in state-of-the-art technology. The rapid progress being made in the field of computer vision has had a tremendous impact on the modeling and implementation of biologically motivated computer vision. A multitude of new advances and findings in the domain of computer vision will be presented at this workshop. By December 1999 a total of 90 full papers had been submitted from 28 countries. To ensure the high quality of workshop and proceedings, the program committee selected and accepted 56 of them after a thorough review process. Of these papers 25 will be presented in 5 oral sessions and 31 in a poster session. The papers span a variety of topics in computer vision from computational theories to their implementation. In addition to these excellent presentations, there will be eight invited lectures by distinguished scientists on “hot” topics. We must add that the program committee and the reviewers did an excellent job within a tight schedule.
Book Synopsis Visual Object Recognition by : Kristen Grauman
Download or read book Visual Object Recognition written by Kristen Grauman and published by Morgan & Claypool Publishers. This book was released on 2011 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: The visual recognition problem is central to computer vision research. From robotics to information retrieval, many desired applications demand the ability to identify and localize categories, places, and objects. This tutorial overviews computer vision algorithms for visual object recognition and image classification. We introduce primary representations and learning approaches, with an emphasis on recent advances in the field. The target audience consists of researchers or students working in AI, robotics, or vision who would like to understand what methods and representations are available for these problems. This lecture summarizes what is and isn't possible to do reliably today, and overviews key concepts that could be employed in systems requiring visual categorization. Table of Contents: Introduction / Overview: Recognition of Specific Objects / Local Features: Detection and Description / Matching Local Features / Geometric Verification of Matched Features / Example Systems: Specific-Object Recognition / Overview: Recognition of Generic Object Categories / Representations for Object Categories / Generic Object Detection: Finding and Scoring Candidates / Learning Generic Object Category Models / Example Systems: Generic Object Recognition / Other Considerations and Current Challenges / Conclusions
Book Synopsis Pattern Recognition and Image Analysis by : Jorge S. Marques
Download or read book Pattern Recognition and Image Analysis written by Jorge S. Marques and published by Springer. This book was released on 2005-05-13 with total page 742 pages. Available in PDF, EPUB and Kindle. Book excerpt: IbPRIA 2005 (Iberian Conference on Pattern Recognition and Image Analysis) was the second of a series of conferences jointly organized every two years by the Portuguese and Spanish Associations for Pattern Recognition (APRP, AERFAI), with the support of the International Association for Pattern Recognition (IAPR). This year, IbPRIA was hosted by the Institute for Systems and Robotics and the Geo-systems Center of the Instituto Superior Tecn ́ ico and it was held in Estoril, Por- gal. It provided the opportunity to bring together researchers from all over the world to discuss some of the most recent advances in pattern recognition and all areas of video, image and signal processing. There was a very positive response to the Call for Papers for IbPRIA 2005. We - ceived 292 full papers from 38 countries and 170 were accepted for presentation at the conference. The high quality of the scienti?c program of IbPRIA 2005 was due ?rst to the authors who submitted excellent contributions and second to the dedicated colla- ration of the international Program Committee and the other researchers who reviewed the papers. Each paper was reviewed by two reviewers, in a blind process. We would like to thank all the authors for submitting their contributions and for sharing their - search activities. We are particularly indebted to the Program Committee members and to all the reviewers for their precious evaluations, which permitted us to set up this publication.
Book Synopsis Challenges and Applications for Implementing Machine Learning in Computer Vision by : Kashyap, Ramgopal
Download or read book Challenges and Applications for Implementing Machine Learning in Computer Vision written by Kashyap, Ramgopal and published by IGI Global. This book was released on 2019-10-04 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning allows for non-conventional and productive answers for issues within various fields, including problems related to visually perceptive computers. Applying these strategies and algorithms to the area of computer vision allows for higher achievement in tasks such as spatial recognition, big data collection, and image processing. There is a need for research that seeks to understand the development and efficiency of current methods that enable machines to see. Challenges and Applications for Implementing Machine Learning in Computer Vision is a collection of innovative research that combines theory and practice on adopting the latest deep learning advancements for machines capable of visual processing. Highlighting a wide range of topics such as video segmentation, object recognition, and 3D modelling, this publication is ideally designed for computer scientists, medical professionals, computer engineers, information technology practitioners, industry experts, scholars, researchers, and students seeking current research on the utilization of evolving computer vision techniques.
Book Synopsis Object Recognition, Attention, and Action by : Naoyuki Osaka
Download or read book Object Recognition, Attention, and Action written by Naoyuki Osaka and published by Springer Science & Business Media. This book was released on 2009-03-12 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Human object recognition is a classical topic both for philosophy and for the natural sciences. Ultimately, understanding of object recognition will be promoted by the cooperation of behavioral research, neurophysiology, and computation. This original book provides an excellent introduction to the issues that are involved. It contains chapters that address the ways in which humans and machines attend to, recognize, and act toward objects in the visual environment.
Book Synopsis Representations and Techniques for 3D Object Recognition and Scene Interpretation by : Derek Hoiem
Download or read book Representations and Techniques for 3D Object Recognition and Scene Interpretation written by Derek Hoiem and published by Morgan & Claypool Publishers. This book was released on 2011 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the grand challenges of artificial intelligence is to enable computers to interpret 3D scenes and objects from imagery. This book organizes and introduces major concepts in 3D scene and object representation and inference from still images, with a focus on recent efforts to fuse models of geometry and perspective with statistical machine learning. The book is organized into three sections: (1) Interpretation of Physical Space; (2) Recognition of 3D Objects; and (3) Integrated 3D Scene Interpretation. The first discusses representations of spatial layout and techniques to interpret physical scenes from images. The second section introduces representations for 3D object categories that account for the intrinsically 3D nature of objects and provide robustness to change in viewpoints. The third section discusses strategies to unite inference of scene geometry and object pose and identity into a coherent scene interpretation. Each section broadly surveys important ideas from cognitive science and artificial intelligence research, organizes and discusses key concepts and techniques from recent work in computer vision, and describes a few sample approaches in detail. Newcomers to computer vision will benefit from introductions to basic concepts, such as single-view geometry and image classification, while experts and novices alike may find inspiration from the book's organization and discussion of the most recent ideas in 3D scene understanding and 3D object recognition. Specific topics include: mathematics of perspective geometry; visual elements of the physical scene, structural 3D scene representations; techniques and features for image and region categorization; historical perspective, computational models, and datasets and machine learning techniques for 3D object recognition; inferences of geometrical attributes of objects, such as size and pose; and probabilistic and feature-passing approaches for contextual reasoning about 3D objects and scenes. Table of Contents: Background on 3D Scene Models / Single-view Geometry / Modeling the Physical Scene / Categorizing Images and Regions / Examples of 3D Scene Interpretation / Background on 3D Recognition / Modeling 3D Objects / Recognizing and Understanding 3D Objects / Examples of 2D 1/2 Layout Models / Reasoning about Objects and Scenes / Cascades of Classifiers / Conclusion and Future Directions
Author :Xiaogang Wang Publisher :Foundations and Trends (R) in Signal Processing ISBN 13 :9781680831160 Total Pages :186 pages Book Rating :4.8/5 (311 download)
Book Synopsis Deep Learning in Object Recognition, Detection, and Segmentation by : Xiaogang Wang
Download or read book Deep Learning in Object Recognition, Detection, and Segmentation written by Xiaogang Wang and published by Foundations and Trends (R) in Signal Processing. This book was released on 2016-07-14 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep Learning in Object Recognition, Detection, and Segmentation provides a comprehensive introductory overview of a topic that is having major impact on many areas of research in signal processing, computer vision, and machine learning.
Book Synopsis Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images by : Yakoub Bazi
Download or read book Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images written by Yakoub Bazi and published by MDPI. This book was released on 2021-06-15 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: The rapid growth of the world population has resulted in an exponential expansion of both urban and agricultural areas. Identifying and managing such earthly changes in an automatic way poses a worth-addressing challenge, in which remote sensing technology can have a fundamental role to answer—at least partially—such demands. The recent advent of cutting-edge processing facilities has fostered the adoption of deep learning architectures owing to their generalization capabilities. In this respect, it seems evident that the pace of deep learning in the remote sensing domain remains somewhat lagging behind that of its computer vision counterpart. This is due to the scarce availability of ground truth information in comparison with other computer vision domains. In this book, we aim at advancing the state of the art in linking deep learning methodologies with remote sensing image processing by collecting 20 contributions from different worldwide scientists and laboratories. The book presents a wide range of methodological advancements in the deep learning field that come with different applications in the remote sensing landscape such as wildfire and postdisaster damage detection, urban forest mapping, vine disease and pavement marking detection, desert road mapping, road and building outline extraction, vehicle and vessel detection, water identification, and text-to-image matching.
Book Synopsis Neuroscience: From Neural Networks to Artificial Intelligence by : Pablo Rudomin
Download or read book Neuroscience: From Neural Networks to Artificial Intelligence written by Pablo Rudomin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Central Nervous System can be considered as an aggregate of neurons specialized in both the transmission and transformation of information. Information can be used for many purposes, but probably the most important one is to generate a representation of the "external" world that allows the organism to react properly to changes in its external environment. These functions range from such basic ones as detection of changes that may lead to tissue damage and eventual destruction of the organism and the implementation of avoidance reactions, to more elaborate representations of the external world implying recognition of shapes, sounds and textures as the basis of planned action or even reflection. Some of these functions confer a clear survival advantage to the organism (prey or mate recognition, escape reactions, etc. ). Others can be considered as an essential part of cognitive processes that contribute, to varying degrees, to the development of individuality and self-consciousness. How can we hope to understand the complexity inherent in this range of functionalities? One of the distinguishing features of the last two decades has been the availability of computational power that has impacted many areas of science. In neurophysiology, computation is used for experiment control, data analysis and for the construction of models that simulate particular systems. Analysis of the behavior of neuronal networks has transcended the limits of neuroscience and is now a discipline in itself, with potential applications both in the neural sciences and in computing sciences.
Book Synopsis Computational Auditory Scene Analysis by : David F. Rosenthal
Download or read book Computational Auditory Scene Analysis written by David F. Rosenthal and published by CRC Press. This book was released on 2021-02-01 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: The interest of AI in problems related to understanding sounds has a rich history dating back to the ARPA Speech Understanding Project in the 1970s. While a great deal has been learned from this and subsequent speech understanding research, the goal of building systems that can understand general acoustic signals--continuous speech and/or non-speech sounds--from unconstrained environments is still unrealized. Instead, there are now systems that understand "clean" speech well in relatively noiseless laboratory environments, but that break down in more realistic, noisier environments. As seen in the "cocktail-party effect," humans and other mammals have the ability to selectively attend to sound from a particular source, even when it is mixed with other sounds. Computers also need to be able to decide which parts of a mixed acoustic signal are relevant to a particular purpose--which part should be interpreted as speech, and which should be interpreted as a door closing, an air conditioner humming, or another person interrupting. Observations such as these have led a number of researchers to conclude that research on speech understanding and on nonspeech understanding need to be united within a more general framework. Researchers have also begun trying to understand computational auditory frameworks as parts of larger perception systems whose purpose is to give a computer integrated information about the real world. Inspiration for this work ranges from research on how different sensors can be integrated to models of how humans' auditory apparatus works in concert with vision, proprioception, etc. Representing some of the most advanced work on computers understanding speech, this collection of papers covers the work being done to integrate speech and nonspeech understanding in computer systems.
Book Synopsis Computer Vision Systems by : Henrik I. Christensen
Download or read book Computer Vision Systems written by Henrik I. Christensen and published by Springer. This book was released on 2003-06-29 with total page 563 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer Vision has now reached a level of maturity that allows us not only to perform research on individual methods but also to build fully integrated computer vision systems of a signi cant complexity. This opens up a number of new problems related to architectures, systems integration, validation of - stems using benchmarking techniques, and so on. So far, the majority of vision conferences have focused on component technologies, which has motivated the organization of the First International Conference on Computer Vision Systems (ICVS). It is our hope that the conference will allow us not only to see a number of interesting new vision techniques and systems but hopefully also to de ne the research issues that need to be addressed to pave the way for more wide-scale use of computer vision in a diverse set of real-world applications. ICVS is organized as a single-track conference consisting of high-quality, p- viously unpublished, contributed papers on new and original research on c- puter vision systems. All contributions will be presented orally. A total of 65 papers were submitted for consideration by the conference. All papers were - viewed by three reviewers from the program committee. Thirty-two of the papers were selected for presentation. ICVS’99 is being held at the Alfredo Kraus Auditorium and Convention Centre, in Las Palmas, on the lovely Canary Islands, Spain. The setting is spri- like, which seems only appropriate as the basis for a new conference.
Book Synopsis Visual Object Recognition by : Kristen Thielscher
Download or read book Visual Object Recognition written by Kristen Thielscher and published by Springer Nature. This book was released on 2022-05-31 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: The visual recognition problem is central to computer vision research. From robotics to information retrieval, many desired applications demand the ability to identify and localize categories, places, and objects. This tutorial overviews computer vision algorithms for visual object recognition and image classification. We introduce primary representations and learning approaches, with an emphasis on recent advances in the field. The target audience consists of researchers or students working in AI, robotics, or vision who would like to understand what methods and representations are available for these problems. This lecture summarizes what is and isn't possible to do reliably today, and overviews key concepts that could be employed in systems requiring visual categorization. Table of Contents: Introduction / Overview: Recognition of Specific Objects / Local Features: Detection and Description / Matching Local Features / Geometric Verification of Matched Features / Example Systems: Specific-Object Recognition / Overview: Recognition of Generic Object Categories / Representations for Object Categories / Generic Object Detection: Finding and Scoring Candidates / Learning Generic Object Category Models / Example Systems: Generic Object Recognition / Other Considerations and Current Challenges / Conclusions
Book Synopsis Vision, Modeling, and Visualization 2000 by : Bernd Girod
Download or read book Vision, Modeling, and Visualization 2000 written by Bernd Girod and published by IOS Press. This book was released on 2000 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Representations and Techniques for 3D Object Recognition and Scene Interpretation by : Derek Santhanam
Download or read book Representations and Techniques for 3D Object Recognition and Scene Interpretation written by Derek Santhanam and published by Springer Nature. This book was released on 2022-05-31 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the grand challenges of artificial intelligence is to enable computers to interpret 3D scenes and objects from imagery. This book organizes and introduces major concepts in 3D scene and object representation and inference from still images, with a focus on recent efforts to fuse models of geometry and perspective with statistical machine learning. The book is organized into three sections: (1) Interpretation of Physical Space; (2) Recognition of 3D Objects; and (3) Integrated 3D Scene Interpretation. The first discusses representations of spatial layout and techniques to interpret physical scenes from images. The second section introduces representations for 3D object categories that account for the intrinsically 3D nature of objects and provide robustness to change in viewpoints. The third section discusses strategies to unite inference of scene geometry and object pose and identity into a coherent scene interpretation. Each section broadly surveys important ideas from cognitive science and artificial intelligence research, organizes and discusses key concepts and techniques from recent work in computer vision, and describes a few sample approaches in detail. Newcomers to computer vision will benefit from introductions to basic concepts, such as single-view geometry and image classification, while experts and novices alike may find inspiration from the book's organization and discussion of the most recent ideas in 3D scene understanding and 3D object recognition. Specific topics include: mathematics of perspective geometry; visual elements of the physical scene, structural 3D scene representations; techniques and features for image and region categorization; historical perspective, computational models, and datasets and machine learning techniques for 3D object recognition; inferences of geometrical attributes of objects, such as size and pose; and probabilistic and feature-passing approaches for contextual reasoning about 3D objects and scenes. Table of Contents: Background on 3D Scene Models / Single-view Geometry / Modeling the Physical Scene / Categorizing Images and Regions / Examples of 3D Scene Interpretation / Background on 3D Recognition / Modeling 3D Objects / Recognizing and Understanding 3D Objects / Examples of 2D 1/2 Layout Models / Reasoning about Objects and Scenes / Cascades of Classifiers / Conclusion and Future Directions
Book Synopsis Artificial Intelligence and Computational Intelligence by : Hepu Deng
Download or read book Artificial Intelligence and Computational Intelligence written by Hepu Deng and published by Springer Science & Business Media. This book was released on 2011-09-09 with total page 693 pages. Available in PDF, EPUB and Kindle. Book excerpt: This three-volume proceedings contains revised selected papers from the Second International Conference on Artificial Intelligence and Computational Intelligence, AICI 2011, held in Taiyuan, China, in September 2011. The total of 265 high-quality papers presented were carefully reviewed and selected from 1073 submissions. The topics of Part III covered are: machine vision; natural language processing; nature computation; neural computation; neural networks; particle swarm optimization; pattern recognition; rough set theory; and support vector machine.
Book Synopsis Invariant Recognition of Visual Objects by : Evgeniy Bart
Download or read book Invariant Recognition of Visual Objects written by Evgeniy Bart and published by Frontiers E-books. This book was released on with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Research Topic will focus on how the visual system recognizes objects regardless of variations in the viewpoint, illumination, retinal size, background, etc. Contributors are encouraged to submit articles describing novel results, models, viewpoints, perspectives and/or methodological innovations relevant to this topic. The issues we wish to cover include, but are not limited to, perceptual invariance under one or more of the following types of image variation: • Object shape • Task • Viewpoint (from the translation and rotation of the object relative to the viewer) • Illumination, shading, and shadows • Degree of occlusion • Retinal size • Color • Surface texture • Visual context, including background clutter and crowding • Object motion (including biological motion). Examples of questions that are particularly interesting in this context include, but are not limited to: • Empirical characterizations of properties of invariance: does invariance always exist? How wide is its range and how strong is the tolerance to viewing conditions within this range? • Invariance in naïve vs. experienced subjects: Is invariance built-in or learned? How can it be learned, under which conditions and how effectively? Is it learned incidentally, or are specific task and reward structures necessary for learning? How is generalizability and transfer of learning related to the generalizability/invariance of perception? • Invariance during inference: Are there conditions (e.g. fast presentation time or otherwise resource-constrained recognition) when invariance breaks? • What are some plausible computational or neural mechanisms by which invariance could be achieved?