Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Learning Hadoop 2
Download Learning Hadoop 2 full books in PDF, epub, and Kindle. Read online Learning Hadoop 2 ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Learning Hadoop 2 by : Garry Turkington
Download or read book Learning Hadoop 2 written by Garry Turkington and published by Packt Publishing Ltd. This book was released on 2015-02-13 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you are a system or application developer interested in learning how to solve practical problems using the Hadoop framework, then this book is ideal for you. You are expected to be familiar with the Unix/Linux command-line interface and have some experience with the Java programming language. Familiarity with Hadoop would be a plus.
Book Synopsis Apache Hadoop YARN by : Arun C. Murthy
Download or read book Apache Hadoop YARN written by Arun C. Murthy and published by Pearson Education. This book was released on 2014 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Apache Hadoop is helping drive the Big Data revolution. Now, its data processing has been completely overhauled: Apache Hadoop YARN provides resource management at data center scale and easier ways to create distributed applications that process petabytes of data. And now in Apache HadoopTM YARN, two Hadoop technical leaders show you how to develop new applications and adapt existing code to fully leverage these revolutionary advances." -- From the Amazon
Book Synopsis Hadoop 2 Quick-Start Guide by : Douglas Eadline
Download or read book Hadoop 2 Quick-Start Guide written by Douglas Eadline and published by Addison-Wesley Professional. This book was released on 2015-10-28 with total page 767 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get Started Fast with Apache Hadoop® 2, YARN, and Today’s Hadoop Ecosystem With Hadoop 2.x and YARN, Hadoop moves beyond MapReduce to become practical for virtually any type of data processing. Hadoop 2.x and the Data Lake concept represent a radical shift away from conventional approaches to data usage and storage. Hadoop 2.x installations offer unmatched scalability and breakthrough extensibility that supports new and existing Big Data analytics processing methods and models. Hadoop® 2 Quick-Start Guide is the first easy, accessible guide to Apache Hadoop 2.x, YARN, and the modern Hadoop ecosystem. Building on his unsurpassed experience teaching Hadoop and Big Data, author Douglas Eadline covers all the basics you need to know to install and use Hadoop 2 on personal computers or servers, and to navigate the powerful technologies that complement it. Eadline concisely introduces and explains every key Hadoop 2 concept, tool, and service, illustrating each with a simple “beginning-to-end” example and identifying trustworthy, up-to-date resources for learning more. This guide is ideal if you want to learn about Hadoop 2 without getting mired in technical details. Douglas Eadline will bring you up to speed quickly, whether you’re a user, admin, devops specialist, programmer, architect, analyst, or data scientist. Coverage Includes Understanding what Hadoop 2 and YARN do, and how they improve on Hadoop 1 with MapReduce Understanding Hadoop-based Data Lakes versus RDBMS Data Warehouses Installing Hadoop 2 and core services on Linux machines, virtualized sandboxes, or clusters Exploring the Hadoop Distributed File System (HDFS) Understanding the essentials of MapReduce and YARN application programming Simplifying programming and data movement with Apache Pig, Hive, Sqoop, Flume, Oozie, and HBase Observing application progress, controlling jobs, and managing workflows Managing Hadoop efficiently with Apache Ambari–including recipes for HDFS to NFSv3 gateway, HDFS snapshots, and YARN configuration Learning basic Hadoop 2 troubleshooting, and installing Apache Hue and Apache Spark
Book Synopsis Hadoop: The Definitive Guide by : Tom White
Download or read book Hadoop: The Definitive Guide written by Tom White and published by "O'Reilly Media, Inc.". This book was released on 2012-05-10 with total page 687 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ready to unlock the power of your data? With this comprehensive guide, you’ll learn how to build and maintain reliable, scalable, distributed systems with Apache Hadoop. This book is ideal for programmers looking to analyze datasets of any size, and for administrators who want to set up and run Hadoop clusters. You’ll find illuminating case studies that demonstrate how Hadoop is used to solve specific problems. This third edition covers recent changes to Hadoop, including material on the new MapReduce API, as well as MapReduce 2 and its more flexible execution model (YARN). Store large datasets with the Hadoop Distributed File System (HDFS) Run distributed computations with MapReduce Use Hadoop’s data and I/O building blocks for compression, data integrity, serialization (including Avro), and persistence Discover common pitfalls and advanced features for writing real-world MapReduce programs Design, build, and administer a dedicated Hadoop cluster—or run Hadoop in the cloud Load data from relational databases into HDFS, using Sqoop Perform large-scale data processing with the Pig query language Analyze datasets with Hive, Hadoop’s data warehousing system Take advantage of HBase for structured and semi-structured data, and ZooKeeper for building distributed systems
Download or read book Hadoop Operations written by Eric Sammer and published by "O'Reilly Media, Inc.". This book was released on 2012-09-26 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you’ve been asked to maintain large and complex Hadoop clusters, this book is a must. Demand for operations-specific material has skyrocketed now that Hadoop is becoming the de facto standard for truly large-scale data processing in the data center. Eric Sammer, Principal Solution Architect at Cloudera, shows you the particulars of running Hadoop in production, from planning, installing, and configuring the system to providing ongoing maintenance. Rather than run through all possible scenarios, this pragmatic operations guide calls out what works, as demonstrated in critical deployments. Get a high-level overview of HDFS and MapReduce: why they exist and how they work Plan a Hadoop deployment, from hardware and OS selection to network requirements Learn setup and configuration details with a list of critical properties Manage resources by sharing a cluster across multiple groups Get a runbook of the most common cluster maintenance tasks Monitor Hadoop clusters—and learn troubleshooting with the help of real-world war stories Use basic tools and techniques to handle backup and catastrophic failure
Download or read book Hadoop For Dummies written by Dirk deRoos and published by John Wiley & Sons. This book was released on 2014-04-14 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: Let Hadoop For Dummies help harness the power of your data and rein in the information overload Big data has become big business, and companies and organizations of all sizes are struggling to find ways to retrieve valuable information from their massive data sets with becoming overwhelmed. Enter Hadoop and this easy-to-understand For Dummies guide. Hadoop For Dummies helps readers understand the value of big data, make a business case for using Hadoop, navigate the Hadoop ecosystem, and build and manage Hadoop applications and clusters. Explains the origins of Hadoop, its economic benefits, and its functionality and practical applications Helps you find your way around the Hadoop ecosystem, program MapReduce, utilize design patterns, and get your Hadoop cluster up and running quickly and easily Details how to use Hadoop applications for data mining, web analytics and personalization, large-scale text processing, data science, and problem-solving Shows you how to improve the value of your Hadoop cluster, maximize your investment in Hadoop, and avoid common pitfalls when building your Hadoop cluster From programmers challenged with building and maintaining affordable, scaleable data systems to administrators who must deal with huge volumes of information effectively and efficiently, this how-to has something to help you with Hadoop.
Download or read book Hadoop in Practice written by Alex Holmes and published by Manning Publications. This book was released on 2014-10-12 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Hadoop in Practice, Second Edition provides over 100 tested, instantly useful techniques that will help you conquer big data, using Hadoop. This revised new edition covers changes and new features in the Hadoop core architecture, including MapReduce 2. Brand new chapters cover YARN and integrating Kafka, Impala, and Spark SQL with Hadoop. You'll also get new and updated techniques for Flume, Sqoop, and Mahout, all of which have seen major new versions recently. In short, this is the most practical, up-to-date coverage of Hadoop available anywhere. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Book It's always a good time to upgrade your Hadoop skills! Hadoop in Practice, Second Edition provides a collection of 104 tested, instantly useful techniques for analyzing real-time streams, moving data securely, machine learning, managing large-scale clusters, and taming big data using Hadoop. This completely revised edition covers changes and new features in Hadoop core, including MapReduce 2 and YARN. You'll pick up hands-on best practices for integrating Spark, Kafka, and Impala with Hadoop, and get new and updated techniques for the latest versions of Flume, Sqoop, and Mahout. In short, this is the most practical, up-to-date coverage of Hadoop available. Readers need to know a programming language like Java and have basic familiarity with Hadoop. What's Inside Thoroughly updated for Hadoop 2 How to write YARN applications Integrate real-time technologies like Storm, Impala, and Spark Predictive analytics using Mahout and RR Readers need to know a programming language like Java and have basic familiarity with Hadoop. About the Author Alex Holmes works on tough big-data problems. He is a software engineer, author, speaker, and blogger specializing in large-scale Hadoop projects. Table of Contents PART 1 BACKGROUND AND FUNDAMENTALS Hadoop in a heartbeat Introduction to YARN PART 2 DATA LOGISTICS Data serialization—working with text and beyond Organizing and optimizing data in HDFS Moving data into and out of Hadoop PART 3 BIG DATA PATTERNS Applying MapReduce patterns to big data Utilizing data structures and algorithms at scale Tuning, debugging, and testing PART 4 BEYOND MAPREDUCE SQL on Hadoop Writing a YARN application
Download or read book Hadoop in Action written by Chuck Lam and published by Simon and Schuster. This book was released on 2010-11-30 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hadoop in Action teaches readers how to use Hadoop and write MapReduce programs. The intended readers are programmers, architects, and project managers who have to process large amounts of data offline. Hadoop in Action will lead the reader from obtaining a copy of Hadoop to setting it up in a cluster and writing data analytic programs. The book begins by making the basic idea of Hadoop and MapReduce easier to grasp by applying the default Hadoop installation to a few easy-to-follow tasks, such as analyzing changes in word frequency across a body of documents. The book continues through the basic concepts of MapReduce applications developed using Hadoop, including a close look at framework components, use of Hadoop for a variety of data analysis tasks, and numerous examples of Hadoop in action. Hadoop in Action will explain how to use Hadoop and present design patterns and practices of programming MapReduce. MapReduce is a complex idea both conceptually and in its implementation, and Hadoop users are challenged to learn all the knobs and levers for running Hadoop. This book takes you beyond the mechanics of running Hadoop, teaching you to write meaningful programs in a MapReduce framework. This book assumes the reader will have a basic familiarity with Java, as most code examples will be written in Java. Familiarity with basic statistical concepts (e.g. histogram, correlation) will help the reader appreciate the more advanced data processing examples. Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.
Book Synopsis Instant Mapreduce Patterns - Hadoop Essentials How-To by : Srinath Perera
Download or read book Instant Mapreduce Patterns - Hadoop Essentials How-To written by Srinath Perera and published by Packt Publishing Ltd. This book was released on 2013-05-22 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt: Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. This is a Packt Instant How-to guide, which provides concise and clear recipes for getting started with Hadoop.This book is for big data enthusiasts and would-be Hadoop programmers. It is also meant for Java programmers who either have not worked with Hadoop at all, or who know Hadoop and MapReduce but are not sure how to deepen their understanding.
Book Synopsis Frank Kane's Taming Big Data with Apache Spark and Python by : Frank Kane
Download or read book Frank Kane's Taming Big Data with Apache Spark and Python written by Frank Kane and published by Packt Publishing Ltd. This book was released on 2017-06-30 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Frank Kane's hands-on Spark training course, based on his bestselling Taming Big Data with Apache Spark and Python video, now available in a book. Understand and analyze large data sets using Spark on a single system or on a cluster. About This Book Understand how Spark can be distributed across computing clusters Develop and run Spark jobs efficiently using Python A hands-on tutorial by Frank Kane with over 15 real-world examples teaching you Big Data processing with Spark Who This Book Is For If you are a data scientist or data analyst who wants to learn Big Data processing using Apache Spark and Python, this book is for you. If you have some programming experience in Python, and want to learn how to process large amounts of data using Apache Spark, Frank Kane's Taming Big Data with Apache Spark and Python will also help you. What You Will Learn Find out how you can identify Big Data problems as Spark problems Install and run Apache Spark on your computer or on a cluster Analyze large data sets across many CPUs using Spark's Resilient Distributed Datasets Implement machine learning on Spark using the MLlib library Process continuous streams of data in real time using the Spark streaming module Perform complex network analysis using Spark's GraphX library Use Amazon's Elastic MapReduce service to run your Spark jobs on a cluster In Detail Frank Kane's Taming Big Data with Apache Spark and Python is your companion to learning Apache Spark in a hands-on manner. Frank will start you off by teaching you how to set up Spark on a single system or on a cluster, and you'll soon move on to analyzing large data sets using Spark RDD, and developing and running effective Spark jobs quickly using Python. Apache Spark has emerged as the next big thing in the Big Data domain – quickly rising from an ascending technology to an established superstar in just a matter of years. Spark allows you to quickly extract actionable insights from large amounts of data, on a real-time basis, making it an essential tool in many modern businesses. Frank has packed this book with over 15 interactive, fun-filled examples relevant to the real world, and he will empower you to understand the Spark ecosystem and implement production-grade real-time Spark projects with ease. Style and approach Frank Kane's Taming Big Data with Apache Spark and Python is a hands-on tutorial with over 15 real-world examples carefully explained by Frank in a step-by-step manner. The examples vary in complexity, and you can move through them at your own pace.
Book Synopsis Expert Hadoop Administration by : Sam R. Alapati
Download or read book Expert Hadoop Administration written by Sam R. Alapati and published by Addison-Wesley Professional. This book was released on 2016-11-29 with total page 2087 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. The Comprehensive, Up-to-Date Apache Hadoop Administration Handbook and Reference “Sam Alapati has worked with production Hadoop clusters for six years. His unique depth of experience has enabled him to write the go-to resource for all administrators looking to spec, size, expand, and secure production Hadoop clusters of any size.” —Paul Dix, Series Editor In Expert Hadoop® Administration, leading Hadoop administrator Sam R. Alapati brings together authoritative knowledge for creating, configuring, securing, managing, and optimizing production Hadoop clusters in any environment. Drawing on his experience with large-scale Hadoop administration, Alapati integrates action-oriented advice with carefully researched explanations of both problems and solutions. He covers an unmatched range of topics and offers an unparalleled collection of realistic examples. Alapati demystifies complex Hadoop environments, helping you understand exactly what happens behind the scenes when you administer your cluster. You’ll gain unprecedented insight as you walk through building clusters from scratch and configuring high availability, performance, security, encryption, and other key attributes. The high-value administration skills you learn here will be indispensable no matter what Hadoop distribution you use or what Hadoop applications you run. Understand Hadoop’s architecture from an administrator’s standpoint Create simple and fully distributed clusters Run MapReduce and Spark applications in a Hadoop cluster Manage and protect Hadoop data and high availability Work with HDFS commands, file permissions, and storage management Move data, and use YARN to allocate resources and schedule jobs Manage job workflows with Oozie and Hue Secure, monitor, log, and optimize Hadoop Benchmark and troubleshoot Hadoop
Book Synopsis Mastering Hadoop 3 by : Chanchal Singh
Download or read book Mastering Hadoop 3 written by Chanchal Singh and published by Packt Publishing Ltd. This book was released on 2019-02-28 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide to mastering the most advanced Hadoop 3 concepts Key FeaturesGet to grips with the newly introduced features and capabilities of Hadoop 3Crunch and process data using MapReduce, YARN, and a host of tools within the Hadoop ecosystemSharpen your Hadoop skills with real-world case studies and codeBook Description Apache Hadoop is one of the most popular big data solutions for distributed storage and for processing large chunks of data. With Hadoop 3, Apache promises to provide a high-performance, more fault-tolerant, and highly efficient big data processing platform, with a focus on improved scalability and increased efficiency. With this guide, you’ll understand advanced concepts of the Hadoop ecosystem tool. You’ll learn how Hadoop works internally, study advanced concepts of different ecosystem tools, discover solutions to real-world use cases, and understand how to secure your cluster. It will then walk you through HDFS, YARN, MapReduce, and Hadoop 3 concepts. You’ll be able to address common challenges like using Kafka efficiently, designing low latency, reliable message delivery Kafka systems, and handling high data volumes. As you advance, you’ll discover how to address major challenges when building an enterprise-grade messaging system, and how to use different stream processing systems along with Kafka to fulfil your enterprise goals. By the end of this book, you’ll have a complete understanding of how components in the Hadoop ecosystem are effectively integrated to implement a fast and reliable data pipeline, and you’ll be equipped to tackle a range of real-world problems in data pipelines. What you will learnGain an in-depth understanding of distributed computing using Hadoop 3Develop enterprise-grade applications using Apache Spark, Flink, and moreBuild scalable and high-performance Hadoop data pipelines with security, monitoring, and data governanceExplore batch data processing patterns and how to model data in HadoopMaster best practices for enterprises using, or planning to use, Hadoop 3 as a data platformUnderstand security aspects of Hadoop, including authorization and authenticationWho this book is for If you want to become a big data professional by mastering the advanced concepts of Hadoop, this book is for you. You’ll also find this book useful if you’re a Hadoop professional looking to strengthen your knowledge of the Hadoop ecosystem. Fundamental knowledge of the Java programming language and basics of Hadoop is necessary to get started with this book.
Book Synopsis Hadoop: The Definitive Guide by : Tom White
Download or read book Hadoop: The Definitive Guide written by Tom White and published by "O'Reilly Media, Inc.". This book was released on 2010-09-24 with total page 630 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover how Apache Hadoop can unleash the power of your data. This comprehensive resource shows you how to build and maintain reliable, scalable, distributed systems with the Hadoop framework -- an open source implementation of MapReduce, the algorithm on which Google built its empire. Programmers will find details for analyzing datasets of any size, and administrators will learn how to set up and run Hadoop clusters. This revised edition covers recent changes to Hadoop, including new features such as Hive, Sqoop, and Avro. It also provides illuminating case studies that illustrate how Hadoop is used to solve specific problems. Looking to get the most out of your data? This is your book. Use the Hadoop Distributed File System (HDFS) for storing large datasets, then run distributed computations over those datasets with MapReduce Become familiar with Hadoop’s data and I/O building blocks for compression, data integrity, serialization, and persistence Discover common pitfalls and advanced features for writing real-world MapReduce programs Design, build, and administer a dedicated Hadoop cluster, or run Hadoop in the cloud Use Pig, a high-level query language for large-scale data processing Analyze datasets with Hive, Hadoop’s data warehousing system Take advantage of HBase, Hadoop’s database for structured and semi-structured data Learn ZooKeeper, a toolkit of coordination primitives for building distributed systems "Now you have the opportunity to learn about Hadoop from a master -- not only of the technology, but also of common sense and plain talk." --Doug Cutting, Cloudera
Book Synopsis Deep Learning with Hadoop by : Dipayan Dev
Download or read book Deep Learning with Hadoop written by Dipayan Dev and published by Packt Publishing Ltd. This book was released on 2017-02-20 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build, implement and scale distributed deep learning models for large-scale datasets About This Book Get to grips with the deep learning concepts and set up Hadoop to put them to use Implement and parallelize deep learning models on Hadoop's YARN framework A comprehensive tutorial to distributed deep learning with Hadoop Who This Book Is For If you are a data scientist who wants to learn how to perform deep learning on Hadoop, this is the book for you. Knowledge of the basic machine learning concepts and some understanding of Hadoop is required to make the best use of this book. What You Will Learn Explore Deep Learning and various models associated with it Understand the challenges of implementing distributed deep learning with Hadoop and how to overcome it Implement Convolutional Neural Network (CNN) with deeplearning4j Delve into the implementation of Restricted Boltzmann Machines (RBM) Understand the mathematical explanation for implementing Recurrent Neural Networks (RNN) Get hands on practice of deep learning and their implementation with Hadoop. In Detail This book will teach you how to deploy large-scale dataset in deep neural networks with Hadoop for optimal performance. Starting with understanding what deep learning is, and what the various models associated with deep neural networks are, this book will then show you how to set up the Hadoop environment for deep learning. In this book, you will also learn how to overcome the challenges that you face while implementing distributed deep learning with large-scale unstructured datasets. The book will also show you how you can implement and parallelize the widely used deep learning models such as Deep Belief Networks, Convolutional Neural Networks, Recurrent Neural Networks, Restricted Boltzmann Machines and autoencoder using the popular deep learning library deeplearning4j. Get in-depth mathematical explanations and visual representations to help you understand the design and implementations of Recurrent Neural network and Denoising AutoEncoders with deeplearning4j. To give you a more practical perspective, the book will also teach you the implementation of large-scale video processing, image processing and natural language processing on Hadoop. By the end of this book, you will know how to deploy various deep neural networks in distributed systems using Hadoop. Style and approach This book takes a comprehensive, step-by-step approach to implement efficient deep learning models on Hadoop. It starts from the basics and builds the readers' knowledge as they strengthen their understanding of the concepts. Practical examples are included in every step of the way to supplement the theory.
Download or read book Hadoop Essentials written by Shiva Achari and published by Packt Publishing Ltd. This book was released on 2015-04-29 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you are a system or application developer interested in learning how to solve practical problems using the Hadoop framework, then this book is ideal for you. This book is also meant for Hadoop professionals who want to find solutions to the different challenges they come across in their Hadoop projects.
Book Synopsis Big Data Using Hadoop and Hive by : Nitin Kumar
Download or read book Big Data Using Hadoop and Hive written by Nitin Kumar and published by Mercury Learning and Information. This book was released on 2021-03-24 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the basic guide for developers, architects, engineers, and anyone who wants to start leveraging the open-source software Hadoop and Hive to build distributed, scalable concurrent big data applications. Hive will be used for reading, writing, and managing the large, data set files. The book is a concise guide on getting started with an overall understanding on Apache Hadoop and Hive and how they work together to speed up development with minimal effort. It will refer to simple concepts and examples, as they are likely to be the best teaching aids. It will explain the logic, code, and configurations needed to build a successful, distributed, concurrent application, as well as the reason behind those decisions. FEATURES: Shows how to leverage the open-source software Hadoop and Hive to build distributed, scalable, concurrent big data applications Includes material on Hive architecture with various storage types and the Hive query language Features a chapter on big data and how Hadoop can be used to solve the changes around it Explains the basic Hadoop setup, configuration, and optimization
Book Synopsis Apache Hadoop 3 Quick Start Guide by : Hrishikesh Vijay Karambelkar
Download or read book Apache Hadoop 3 Quick Start Guide written by Hrishikesh Vijay Karambelkar and published by Packt Publishing Ltd. This book was released on 2018-10-31 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: A fast paced guide that will help you learn about Apache Hadoop 3 and its ecosystem Key FeaturesSet up, configure and get started with Hadoop to get useful insights from large data setsWork with the different components of Hadoop such as MapReduce, HDFS and YARN Learn about the new features introduced in Hadoop 3Book Description Apache Hadoop is a widely used distributed data platform. It enables large datasets to be efficiently processed instead of using one large computer to store and process the data. This book will get you started with the Hadoop ecosystem, and introduce you to the main technical topics, including MapReduce, YARN, and HDFS. The book begins with an overview of big data and Apache Hadoop. Then, you will set up a pseudo Hadoop development environment and a multi-node enterprise Hadoop cluster. You will see how the parallel programming paradigm, such as MapReduce, can solve many complex data processing problems. The book also covers the important aspects of the big data software development lifecycle, including quality assurance and control, performance, administration, and monitoring. You will then learn about the Hadoop ecosystem, and tools such as Kafka, Sqoop, Flume, Pig, Hive, and HBase. Finally, you will look at advanced topics, including real time streaming using Apache Storm, and data analytics using Apache Spark. By the end of the book, you will be well versed with different configurations of the Hadoop 3 cluster. What you will learnStore and analyze data at scale using HDFS, MapReduce and YARNInstall and configure Hadoop 3 in different modesUse Yarn effectively to run different applications on Hadoop based platformUnderstand and monitor how Hadoop cluster is managedConsume streaming data using Storm, and then analyze it using SparkExplore Apache Hadoop ecosystem components, such as Flume, Sqoop, HBase, Hive, and KafkaWho this book is for Aspiring Big Data professionals who want to learn the essentials of Hadoop 3 will find this book to be useful. Existing Hadoop users who want to get up to speed with the new features introduced in Hadoop 3 will also benefit from this book. Having knowledge of Java programming will be an added advantage.