Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Large Scale Numerical Optimization
Download Large Scale Numerical Optimization full books in PDF, epub, and Kindle. Read online Large Scale Numerical Optimization ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Numerical Optimization by : Jorge Nocedal
Download or read book Numerical Optimization written by Jorge Nocedal and published by Springer Science & Business Media. This book was released on 2006-12-11 with total page 686 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.
Book Synopsis Large-scale Numerical Optimization by : Thomas Frederick Coleman
Download or read book Large-scale Numerical Optimization written by Thomas Frederick Coleman and published by SIAM. This book was released on 1990-01-01 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Papers from a workshop held at Cornell University, Oct. 1989, and sponsored by Cornell's Mathematical Sciences Institute. Annotation copyright Book News, Inc. Portland, Or.
Book Synopsis Optimization for Machine Learning by : Suvrit Sra
Download or read book Optimization for Machine Learning written by Suvrit Sra and published by MIT Press. This book was released on 2012 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date account of the interplay between optimization and machine learning, accessible to students and researchers in both communities. The interplay between optimization and machine learning is one of the most important developments in modern computational science. Optimization formulations and methods are proving to be vital in designing algorithms to extract essential knowledge from huge volumes of data. Machine learning, however, is not simply a consumer of optimization technology but a rapidly evolving field that is itself generating new optimization ideas. This book captures the state of the art of the interaction between optimization and machine learning in a way that is accessible to researchers in both fields. Optimization approaches have enjoyed prominence in machine learning because of their wide applicability and attractive theoretical properties. The increasing complexity, size, and variety of today's machine learning models call for the reassessment of existing assumptions. This book starts the process of reassessment. It describes the resurgence in novel contexts of established frameworks such as first-order methods, stochastic approximations, convex relaxations, interior-point methods, and proximal methods. It also devotes attention to newer themes such as regularized optimization, robust optimization, gradient and subgradient methods, splitting techniques, and second-order methods. Many of these techniques draw inspiration from other fields, including operations research, theoretical computer science, and subfields of optimization. The book will enrich the ongoing cross-fertilization between the machine learning community and these other fields, and within the broader optimization community.
Book Synopsis Large-Scale and Distributed Optimization by : Pontus Giselsson
Download or read book Large-Scale and Distributed Optimization written by Pontus Giselsson and published by Springer. This book was released on 2018-11-11 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents tools and methods for large-scale and distributed optimization. Since many methods in "Big Data" fields rely on solving large-scale optimization problems, often in distributed fashion, this topic has over the last decade emerged to become very important. As well as specific coverage of this active research field, the book serves as a powerful source of information for practitioners as well as theoreticians. Large-Scale and Distributed Optimization is a unique combination of contributions from leading experts in the field, who were speakers at the LCCC Focus Period on Large-Scale and Distributed Optimization, held in Lund, 14th–16th June 2017. A source of information and innovative ideas for current and future research, this book will appeal to researchers, academics, and students who are interested in large-scale optimization.
Book Synopsis Large-Scale PDE-Constrained Optimization by : Lorenz T. Biegler
Download or read book Large-Scale PDE-Constrained Optimization written by Lorenz T. Biegler and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimal design, optimal control, and parameter estimation of systems governed by partial differential equations (PDEs) give rise to a class of problems known as PDE-constrained optimization. The size and complexity of the discretized PDEs often pose significant challenges for contemporary optimization methods. With the maturing of technology for PDE simulation, interest has now increased in PDE-based optimization. The chapters in this volume collectively assess the state of the art in PDE-constrained optimization, identify challenges to optimization presented by modern highly parallel PDE simulation codes, and discuss promising algorithmic and software approaches for addressing them. These contributions represent current research of two strong scientific computing communities, in optimization and PDE simulation. This volume merges perspectives in these two different areas and identifies interesting open questions for further research.
Book Synopsis Large-scale Optimization by : Vladimir Tsurkov
Download or read book Large-scale Optimization written by Vladimir Tsurkov and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Decomposition methods aim to reduce large-scale problems to simpler problems. This monograph presents selected aspects of the dimension-reduction problem. Exact and approximate aggregations of multidimensional systems are developed and from a known model of input-output balance, aggregation methods are categorized. The issues of loss of accuracy, recovery of original variables (disaggregation), and compatibility conditions are analyzed in detail. The method of iterative aggregation in large-scale problems is studied. For fixed weights, successively simpler aggregated problems are solved and the convergence of their solution to that of the original problem is analyzed. An introduction to block integer programming is considered. Duality theory, which is widely used in continuous block programming, does not work for the integer problem. A survey of alternative methods is presented and special attention is given to combined methods of decomposition. Block problems in which the coupling variables do not enter the binding constraints are studied. These models are worthwhile because they permit a decomposition with respect to primal and dual variables by two-level algorithms instead of three-level algorithms. Audience: This book is addressed to specialists in operations research, optimization, and optimal control.
Book Synopsis Large-Scale Nonlinear Optimization by : Gianni Pillo
Download or read book Large-Scale Nonlinear Optimization written by Gianni Pillo and published by Springer Science & Business Media. This book was released on 2006-06-03 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews and discusses recent advances in the development of methods and algorithms for nonlinear optimization and its applications, focusing on the large-dimensional case, the current forefront of much research. Individual chapters, contributed by eminent authorities, provide an up-to-date overview of the field from different and complementary standpoints, including theoretical analysis, algorithmic development, implementation issues and applications.
Book Synopsis Stochastic Optimization for Large-scale Machine Learning by : Vinod Kumar Chauhan
Download or read book Stochastic Optimization for Large-scale Machine Learning written by Vinod Kumar Chauhan and published by CRC Press. This book was released on 2021-11-18 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advancements in the technology and availability of data sources have led to the `Big Data' era. Working with large data offers the potential to uncover more fine-grained patterns and take timely and accurate decisions, but it also creates a lot of challenges such as slow training and scalability of machine learning models. One of the major challenges in machine learning is to develop efficient and scalable learning algorithms, i.e., optimization techniques to solve large scale learning problems. Stochastic Optimization for Large-scale Machine Learning identifies different areas of improvement and recent research directions to tackle the challenge. Developed optimisation techniques are also explored to improve machine learning algorithms based on data access and on first and second order optimisation methods. Key Features: Bridges machine learning and Optimisation. Bridges theory and practice in machine learning. Identifies key research areas and recent research directions to solve large-scale machine learning problems. Develops optimisation techniques to improve machine learning algorithms for big data problems. The book will be a valuable reference to practitioners and researchers as well as students in the field of machine learning.
Book Synopsis Mathematical Theory of Optimization by : Ding-Zhu Du
Download or read book Mathematical Theory of Optimization written by Ding-Zhu Du and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the mathematical theory of optimization. It emphasizes the convergence theory of nonlinear optimization algorithms and applications of nonlinear optimization to combinatorial optimization. Mathematical Theory of Optimization includes recent developments in global convergence, the Powell conjecture, semidefinite programming, and relaxation techniques for designs of approximation solutions of combinatorial optimization problems.
Book Synopsis Parallel Optimization by : Yair Censor
Download or read book Parallel Optimization written by Yair Censor and published by Oxford University Press, USA. This book was released on 1997 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a unique pathway to methods of parallel optimization by introducing parallel computing ideas into both optimization theory and into some numerical algorithms for large-scale optimization problems. The three parts of the book bring together relevant theory, careful study of algorithms, and modeling of significant real world problems such as image reconstruction, radiation therapy treatment planning, financial planning, transportation and multi-commodity network flow problems, planning under uncertainty, and matrix balancing problems.
Book Synopsis First-Order Methods in Optimization by : Amir Beck
Download or read book First-Order Methods in Optimization written by Amir Beck and published by SIAM. This book was released on 2017-10-02 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary goal of this book is to provide a self-contained, comprehensive study of the main ?rst-order methods that are frequently used in solving large-scale problems. First-order methods exploit information on values and gradients/subgradients (but not Hessians) of the functions composing the model under consideration. With the increase in the number of applications that can be modeled as large or even huge-scale optimization problems, there has been a revived interest in using simple methods that require low iteration cost as well as low memory storage. The author has gathered, reorganized, and synthesized (in a unified manner) many results that are currently scattered throughout the literature, many of which cannot be typically found in optimization books. First-Order Methods in Optimization offers comprehensive study of first-order methods with the theoretical foundations; provides plentiful examples and illustrations; emphasizes rates of convergence and complexity analysis of the main first-order methods used to solve large-scale problems; and covers both variables and functional decomposition methods.
Book Synopsis Data-Driven Modeling & Scientific Computation by : Jose Nathan Kutz
Download or read book Data-Driven Modeling & Scientific Computation written by Jose Nathan Kutz and published by . This book was released on 2013-08-08 with total page 657 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combining scientific computing methods and algorithms with modern data analysis techniques, including basic applications of compressive sensing and machine learning, this book develops techniques that allow for the integration of the dynamics of complex systems and big data. MATLAB is used throughout for mathematical solution strategies.
Book Synopsis Proceedings of COMPSTAT'2010 by : Yves Lechevallier
Download or read book Proceedings of COMPSTAT'2010 written by Yves Lechevallier and published by Springer Science & Business Media. This book was released on 2010-11-08 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the 19th international symposium on computational statistics, held in Paris august 22-27, 2010.Together with 3 keynote talks, there were 14 invited sessions and more than 100 peer-reviewed contributed communications.
Book Synopsis Trust Region Methods by : A. R. Conn
Download or read book Trust Region Methods written by A. R. Conn and published by SIAM. This book was released on 2000-01-01 with total page 960 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Computing -- General.
Book Synopsis Numerical Continuation Methods by : Eugene L. Allgower
Download or read book Numerical Continuation Methods written by Eugene L. Allgower and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past fifteen years two new techniques have yielded extremely important contributions toward the numerical solution of nonlinear systems of equations. This book provides an introduction to and an up-to-date survey of numerical continuation methods (tracing of implicitly defined curves) of both predictor-corrector and piecewise-linear types. It presents and analyzes implementations aimed at applications to the computation of zero points, fixed points, nonlinear eigenvalue problems, bifurcation and turning points, and economic equilibria. Many algorithms are presented in a pseudo code format. An appendix supplies five sample FORTRAN programs with numerical examples, which readers can adapt to fit their purposes, and a description of the program package SCOUT for analyzing nonlinear problems via piecewise-linear methods. An extensive up-to-date bibliography spanning 46 pages is included. The material in this book has been presented to students of mathematics, engineering and sciences with great success, and will also serve as a valuable tool for researchers in the field.
Download or read book Lancelot written by A.R. Conn and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: LANCELOT is a software package for solving large-scale nonlinear optimization problems. This book is our attempt to provide a coherent overview of the package and its use. This includes details of how one might present examples to the package, how the algorithm tries to solve these examples and various technical issues which may be useful to implementors of the software. We hope this book will be of use to both researchers and practitioners in nonlinear programming. Although the book is primarily concerned with a specific optimization package, the issues discussed have much wider implications for the design and im plementation of large-scale optimization algorithms. In particular, the book contains a proposal for a standard input format for large-scale optimization problems. This proposal is at the heart of the interface between a user's problem and the LANCE LOT optimization package. Furthermore, a large collection of over five hundred test ex amples has already been written in this format and will shortly be available to those who wish to use them. We would like to thank the many people and organizations who supported us in our enterprise. We first acknowledge the support provided by our employers, namely the the Facultes Universitaires Notre-Dame de la Paix (Namur, Belgium), Harwell Laboratory (UK), IBM Corporation (USA), Rutherford Appleton Laboratory (UK) and the University of Waterloo (Canada). We are grateful for the support we obtained from NSERC (Canada), NATO and AMOCO (UK).
Book Synopsis Advances in Optimization and Numerical Analysis by : S. Gomez
Download or read book Advances in Optimization and Numerical Analysis written by S. Gomez and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: In January 1992, the Sixth Workshop on Optimization and Numerical Analysis was held in the heart of the Mixteco-Zapoteca region, in the city of Oaxaca, Mexico, a beautiful and culturally rich site in ancient, colonial and modern Mexican civiliza tion. The Workshop was organized by the Numerical Analysis Department at the Institute of Research in Applied Mathematics of the National University of Mexico in collaboration with the Mathematical Sciences Department at Rice University, as were the previous ones in 1978, 1979, 1981, 1984 and 1989. As were the third, fourth, and fifth workshops, this one was supported by a grant from the Mexican National Council for Science and Technology, and the US National Science Foundation, as part of the joint Scientific and Technical Cooperation Program existing between these two countries. The participation of many of the leading figures in the field resulted in a good representation of the state of the art in Continuous Optimization, and in an over view of several topics including Numerical Methods for Diffusion-Advection PDE problems as well as some Numerical Linear Algebraic Methods to solve related pro blems. This book collects some of the papers given at this Workshop.