Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Large Language Models A Deep Dive
Download Large Language Models A Deep Dive full books in PDF, epub, and Kindle. Read online Large Language Models A Deep Dive ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Large Language Models by : Uday Kamath
Download or read book Large Language Models written by Uday Kamath and published by Springer Nature. This book was released on 2024 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large Language Models (LLMs) have emerged as a cornerstone technology, transforming how we interact with information and redefining the boundaries of artificial intelligence. LLMs offer an unprecedented ability to understand, generate, and interact with human language in an intuitive and insightful manner, leading to transformative applications across domains like content creation, chatbots, search engines, and research tools. While fascinating, the complex workings of LLMs -- their intricate architecture, underlying algorithms, and ethical considerations -- require thorough exploration, creating a need for a comprehensive book on this subject. This book provides an authoritative exploration of the design, training, evolution, and application of LLMs. It begins with an overview of pre-trained language models and Transformer architectures, laying the groundwork for understanding prompt-based learning techniques. Next, it dives into methods for fine-tuning LLMs, integrating reinforcement learning for value alignment, and the convergence of LLMs with computer vision, robotics, and speech processing. The book strongly emphasizes practical applications, detailing real-world use cases such as conversational chatbots, retrieval-augmented generation (RAG), and code generation. These examples are carefully chosen to illustrate the diverse and impactful ways LLMs are being applied in various industries and scenarios. Readers will gain insights into operationalizing and deploying LLMs, from implementing modern tools and libraries to addressing challenges like bias and ethical implications. The book also introduces the cutting-edge realm of multimodal LLMs that can process audio, images, video, and robotic inputs. With hands-on tutorials for applying LLMs to natural language tasks, this thorough guide equips readers with both theoretical knowledge and practical skills for leveraging the full potential of large language models. This comprehensive resource is appropriate for a wide audience: students, researchers and academics in AI or NLP, practicing data scientists, and anyone looking to grasp the essence and intricacies of LLMs.
Book Synopsis A Deep Dive into Large Language Models: Exploring the Power of Bloom, Vicuna, PaLM, Cohere, Falcon 40B, and Beyond by : Anand Vemula
Download or read book A Deep Dive into Large Language Models: Exploring the Power of Bloom, Vicuna, PaLM, Cohere, Falcon 40B, and Beyond written by Anand Vemula and published by Anand Vemula. This book was released on with total page 31 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Deep Dive into Large Language Models: Unveiling the Power of AI's New Storytellers Unleashing the Power of Language: A New Era of AI Large language models (LLMs) are revolutionizing the way we interact with machines. These AI marvels, trained on massive amounts of text data, can not only understand human language but also generate creative text formats, translate languages, write different kinds of creative content, and answer your questions in an informative way. This book delves into the fascinating world of LLMs, exploring their inner workings, potential applications, and the exciting future they hold. Part I: Demystifying the LLM Landscape We begin by unveiling the core concepts of LLMs. You'll discover how they learn through massive datasets and pre-training, and how the powerful transformer architecture allows them to analyze the nuances of language. We'll also explore the benefits and limitations of LLMs, discussing their potential to automate tasks, enhance creativity, and break down language barriers, while acknowledging concerns about bias and ethical considerations. Part II: Unveiling the Champions: A Look at Pioneering LLM Technologies Get ready to meet the champions of the LLM world! We'll take a deep dive into specific technologies like Bloom (Google AI) with its massive parameter count, Vicuna (Meta AI) excelling in multilingual capabilities, and PaLM (Google AI) boasting a unique pathway system that leverages information beyond just text. We'll also explore Cohere's focus on interpretability and Falcon 40B's (Tsinghua University) strength in factual language understanding. Part III: Charting the Course: The Future of LLMs and Their Impact The journey doesn't end there. We'll explore emerging trends shaping the future of LLMs, like the focus on interpretability, the exciting possibilities of multimodal learning, and the drive for smaller, more efficient models. We'll also delve into the ethical considerations surrounding bias, transparency, and responsible AI practices that are crucial for harnessing the potential of LLMs for good. Finally, we'll examine the profound impact LLMs could have on society, from enhancing automation and personalized experiences to fostering communication and new forms of creativity. This book is your guide to understanding large language models, their capabilities, and the transformative potential they hold for the future. As we move forward, this exploration equips you to be an informed participant in the exciting world of AI language technologies.
Book Synopsis Large Language Models in Finance: A Deep Dive by : Anand Vemula
Download or read book Large Language Models in Finance: A Deep Dive written by Anand Vemula and published by Anand Vemula. This book was released on with total page 67 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Large Language Models in Finance: A Deep Dive" offers an insightful exploration into the application of advanced language models within the finance sector. This book delves into the transformative impact of large language models (LLMs) on various aspects of finance, offering a comprehensive overview suitable for both novices and experts in the field. Through the lens of LLMs, readers gain a deeper understanding of how natural language processing (NLP) techniques are revolutionizing financial operations. The book begins by elucidating the significance of LLMs in finance, highlighting their role in tasks such as sentiment analysis, financial forecasting, risk management, and fraud detection. With a focus on practical applications, "Large Language Models in Finance" provides insights into how LLMs are utilized for sentiment analysis, enabling financial professionals to gauge market sentiment and make informed investment decisions. It further explores their role in financial forecasting and predictions, facilitating the development of quantitative trading strategies and enhancing decision-making processes. The book also delves into the crucial aspect of risk management and compliance, showcasing how LLMs aid in identifying potential risks, automating compliance checks, and ensuring adherence to regulatory requirements. Readers gain valuable insights into the ethical considerations surrounding the use of LLMs in finance, including data privacy, bias mitigation, and the responsible deployment of AI technologies. Moreover, "Large Language Models in Finance" offers practical guidance on leveraging LLMs for financial reporting, analysis, and automation, enabling organizations to streamline processes and derive actionable insights from vast amounts of data. The book concludes with a forward-looking perspective, exploring emerging trends, future innovations, and the evolving landscape of LLMs in finance. In summary, "Large Language Models in Finance: A Deep Dive" serves as a comprehensive guide for anyone interested in understanding the transformative potential of LLMs in the finance industry. With its accessible language, practical examples, and forward-thinking insights, this book is essential reading for finance professionals, researchers, and enthusiasts alike.
Book Synopsis Generative AI and Large Language Models by : Aditya Pratap Bhuyan
Download or read book Generative AI and Large Language Models written by Aditya Pratap Bhuyan and published by Aditya Pratap Bhuyan. This book was released on 2024-07-24 with total page 109 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence is reshaping our world, and at the forefront of this revolution are Generative AI and Large Language Models (LLMs). This book, "Generative AI and Large Language Models: Revolutionizing the Future," offers an in-depth exploration of these groundbreaking technologies, delving into their foundations, development, and profound implications for various industries and society as a whole. Starting with a historical overview of AI, the book traces the evolution of machine learning and deep learning, setting the stage for understanding the rise of generative AI. Readers will discover the inner workings of LLMs, from their advanced neural network architectures to the massive datasets and computational power required for their training. Key models, such as the Generative Pre-trained Transformer (GPT) series, are examined in detail, showcasing their remarkable capabilities in natural language processing and beyond. The book also addresses the ethical and social challenges posed by these powerful technologies. Issues such as bias, fairness, and privacy are discussed, alongside the need for transparent and accountable AI systems. Through real-world applications and case studies, readers will see how generative AI is transforming fields like healthcare, finance, content creation, and more. Looking ahead, the book explores future trends and innovations, highlighting potential advancements and the ongoing research aimed at enhancing AI's efficiency and multimodal capabilities. It envisions a future where AI and humans collaborate more closely, driving progress and innovation across all domains. "Generative AI and Large Language Models: Revolutionizing the Future" is an essential read for anyone interested in the cutting-edge of AI technology. Whether you are a researcher, practitioner, or simply curious about the future of AI, this book provides a comprehensive and accessible guide to the transformative power of generative AI and LLMs.
Book Synopsis Dive Into Deep Learning by : Joanne Quinn
Download or read book Dive Into Deep Learning written by Joanne Quinn and published by Corwin Press. This book was released on 2019-07-15 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: The leading experts in system change and learning, with their school-based partners around the world, have created this essential companion to their runaway best-seller, Deep Learning: Engage the World Change the World. This hands-on guide provides a roadmap for building capacity in teachers, schools, districts, and systems to design deep learning, measure progress, and assess conditions needed to activate and sustain innovation. Dive Into Deep Learning: Tools for Engagement is rich with resources educators need to construct and drive meaningful deep learning experiences in order to develop the kind of mindset and know-how that is crucial to becoming a problem-solving change agent in our global society. Designed in full color, this easy-to-use guide is loaded with tools, tips, protocols, and real-world examples. It includes: • A framework for deep learning that provides a pathway to develop the six global competencies needed to flourish in a complex world — character, citizenship, collaboration, communication, creativity, and critical thinking. • Learning progressions to help educators analyze student work and measure progress. • Learning design rubrics, templates and examples for incorporating the four elements of learning design: learning partnerships, pedagogical practices, learning environments, and leveraging digital. • Conditions rubrics, teacher self-assessment tools, and planning guides to help educators build, mobilize, and sustain deep learning in schools and districts. Learn about, improve, and expand your world of learning. Put the joy back into learning for students and adults alike. Dive into deep learning to create learning experiences that give purpose, unleash student potential, and transform not only learning, but life itself.
Book Synopsis Deep Learning Illustrated by : Jon Krohn
Download or read book Deep Learning Illustrated written by Jon Krohn and published by Addison-Wesley Professional. This book was released on 2019-08-05 with total page 725 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The authors’ clear visual style provides a comprehensive look at what’s currently possible with artificial neural networks as well as a glimpse of the magic that’s to come." – Tim Urban, author of Wait But Why Fully Practical, Insightful Guide to Modern Deep Learning Deep learning is transforming software, facilitating powerful new artificial intelligence capabilities, and driving unprecedented algorithm performance. Deep Learning Illustrated is uniquely intuitive and offers a complete introduction to the discipline’s techniques. Packed with full-color figures and easy-to-follow code, it sweeps away the complexity of building deep learning models, making the subject approachable and fun to learn. World-class instructor and practitioner Jon Krohn–with visionary content from Grant Beyleveld and beautiful illustrations by Aglaé Bassens–presents straightforward analogies to explain what deep learning is, why it has become so popular, and how it relates to other machine learning approaches. Krohn has created a practical reference and tutorial for developers, data scientists, researchers, analysts, and students who want to start applying it. He illuminates theory with hands-on Python code in accompanying Jupyter notebooks. To help you progress quickly, he focuses on the versatile deep learning library Keras to nimbly construct efficient TensorFlow models; PyTorch, the leading alternative library, is also covered. You’ll gain a pragmatic understanding of all major deep learning approaches and their uses in applications ranging from machine vision and natural language processing to image generation and game-playing algorithms. Discover what makes deep learning systems unique, and the implications for practitioners Explore new tools that make deep learning models easier to build, use, and improve Master essential theory: artificial neurons, training, optimization, convolutional nets, recurrent nets, generative adversarial networks (GANs), deep reinforcement learning, and more Walk through building interactive deep learning applications, and move forward with your own artificial intelligence projects Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
Book Synopsis Deep Learning for NLP and Speech Recognition by : Uday Kamath
Download or read book Deep Learning for NLP and Speech Recognition written by Uday Kamath and published by Springer. This book was released on 2019-06-10 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook explains Deep Learning Architecture, with applications to various NLP Tasks, including Document Classification, Machine Translation, Language Modeling, and Speech Recognition. With the widespread adoption of deep learning, natural language processing (NLP),and speech applications in many areas (including Finance, Healthcare, and Government) there is a growing need for one comprehensive resource that maps deep learning techniques to NLP and speech and provides insights into using the tools and libraries for real-world applications. Deep Learning for NLP and Speech Recognition explains recent deep learning methods applicable to NLP and speech, provides state-of-the-art approaches, and offers real-world case studies with code to provide hands-on experience. Many books focus on deep learning theory or deep learning for NLP-specific tasks while others are cookbooks for tools and libraries, but the constant flux of new algorithms, tools, frameworks, and libraries in a rapidly evolving landscape means that there are few available texts that offer the material in this book. The book is organized into three parts, aligning to different groups of readers and their expertise. The three parts are: Machine Learning, NLP, and Speech Introduction The first part has three chapters that introduce readers to the fields of NLP, speech recognition, deep learning and machine learning with basic theory and hands-on case studies using Python-based tools and libraries. Deep Learning Basics The five chapters in the second part introduce deep learning and various topics that are crucial for speech and text processing, including word embeddings, convolutional neural networks, recurrent neural networks and speech recognition basics. Theory, practical tips, state-of-the-art methods, experimentations and analysis in using the methods discussed in theory on real-world tasks. Advanced Deep Learning Techniques for Text and Speech The third part has five chapters that discuss the latest and cutting-edge research in the areas of deep learning that intersect with NLP and speech. Topics including attention mechanisms, memory augmented networks, transfer learning, multi-task learning, domain adaptation, reinforcement learning, and end-to-end deep learning for speech recognition are covered using case studies.
Book Synopsis Advancing Software Engineering Through AI, Federated Learning, and Large Language Models by : Sharma, Avinash Kumar
Download or read book Advancing Software Engineering Through AI, Federated Learning, and Large Language Models written by Sharma, Avinash Kumar and published by IGI Global. This book was released on 2024-05-02 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: The rapid evolution of software engineering demands innovative approaches to meet the growing complexity and scale of modern software systems. Traditional methods often need help to keep pace with the demands for efficiency, reliability, and scalability. Manual development, testing, and maintenance processes are time-consuming and error-prone, leading to delays and increased costs. Additionally, integrating new technologies, such as AI, ML, Federated Learning, and Large Language Models (LLM), presents unique challenges in terms of implementation and ethical considerations. Advancing Software Engineering Through AI, Federated Learning, and Large Language Models provides a compelling solution by comprehensively exploring how AI, ML, Federated Learning, and LLM intersect with software engineering. By presenting real-world case studies, practical examples, and implementation guidelines, the book ensures that readers can readily apply these concepts in their software engineering projects. Researchers, academicians, practitioners, industrialists, and students will benefit from the interdisciplinary insights provided by experts in AI, ML, software engineering, and ethics.
Book Synopsis Mastering Large Language Models with Python by : Raj Arun R
Download or read book Mastering Large Language Models with Python written by Raj Arun R and published by Orange Education Pvt Ltd. This book was released on 2024-04-12 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Comprehensive Guide to Leverage Generative AI in the Modern Enterprise KEY FEATURES ● Gain a comprehensive understanding of LLMs within the framework of Generative AI, from foundational concepts to advanced applications. ● Dive into practical exercises and real-world applications, accompanied by detailed code walkthroughs in Python. ● Explore LLMOps with a dedicated focus on ensuring trustworthy AI and best practices for deploying, managing, and maintaining LLMs in enterprise settings. ● Prioritize the ethical and responsible use of LLMs, with an emphasis on building models that adhere to principles of fairness, transparency, and accountability, fostering trust in AI technologies. DESCRIPTION “Mastering Large Language Models with Python” is an indispensable resource that offers a comprehensive exploration of Large Language Models (LLMs), providing the essential knowledge to leverage these transformative AI models effectively. From unraveling the intricacies of LLM architecture to practical applications like code generation and AI-driven recommendation systems, readers will gain valuable insights into implementing LLMs in diverse projects. Covering both open-source and proprietary LLMs, the book delves into foundational concepts and advanced techniques, empowering professionals to harness the full potential of these models. Detailed discussions on quantization techniques for efficient deployment, operational strategies with LLMOps, and ethical considerations ensure a well-rounded understanding of LLM implementation. Through real-world case studies, code snippets, and practical examples, readers will navigate the complexities of LLMs with confidence, paving the way for innovative solutions and organizational growth. Whether you seek to deepen your understanding, drive impactful applications, or lead AI-driven initiatives, this book equips you with the tools and insights needed to excel in the dynamic landscape of artificial intelligence. WHAT WILL YOU LEARN ● In-depth study of LLM architecture and its versatile applications across industries. ● Harness open-source and proprietary LLMs to craft innovative solutions. ● Implement LLM APIs for a wide range of tasks spanning natural language processing, audio analysis, and visual recognition. ● Optimize LLM deployment through techniques such as quantization and operational strategies like LLMOps, ensuring efficient and scalable model usage. ● Master prompt engineering techniques to fine-tune LLM outputs, enhancing quality and relevance for diverse use cases. ● Navigate the complex landscape of ethical AI development, prioritizing responsible practices to drive impactful technology adoption and advancement. WHO IS THIS BOOK FOR? This book is tailored for software engineers, data scientists, AI researchers, and technology leaders with a foundational understanding of machine learning concepts and programming. It's ideal for those looking to deepen their knowledge of Large Language Models and their practical applications in the field of AI. If you aim to explore LLMs extensively for implementing inventive solutions or spearheading AI-driven projects, this book is tailored to your needs. TABLE OF CONTENTS 1. The Basics of Large Language Models and Their Applications 2. Demystifying Open-Source Large Language Models 3. Closed-Source Large Language Models 4. LLM APIs for Various Large Language Model Tasks 5. Integrating Cohere API in Google Sheets 6. Dynamic Movie Recommendation Engine Using LLMs 7. Document-and Web-based QA Bots with Large Language Models 8. LLM Quantization Techniques and Implementation 9. Fine-tuning and Evaluation of LLMs 10. Recipes for Fine-Tuning and Evaluating LLMs 11. LLMOps - Operationalizing LLMs at Scale 12. Implementing LLMOps in Practice Using MLflow on Databricks 13. Mastering the Art of Prompt Engineering 14. Prompt Engineering Essentials and Design Patterns 15. Ethical Considerations and Regulatory Frameworks for LLMs 16. Towards Trustworthy Generative AI (A Novel Framework Inspired by Symbolic Reasoning) Index
Book Synopsis Mastering Java Machine Learning by : Dr. Uday Kamath
Download or read book Mastering Java Machine Learning written by Dr. Uday Kamath and published by Packt Publishing Ltd. This book was released on 2017-07-11 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: Become an advanced practitioner with this progressive set of master classes on application-oriented machine learning About This Book Comprehensive coverage of key topics in machine learning with an emphasis on both the theoretical and practical aspects More than 15 open source Java tools in a wide range of techniques, with code and practical usage. More than 10 real-world case studies in machine learning highlighting techniques ranging from data ingestion up to analyzing the results of experiments, all preparing the user for the practical, real-world use of tools and data analysis. Who This Book Is For This book will appeal to anyone with a serious interest in topics in Data Science or those already working in related areas: ideally, intermediate-level data analysts and data scientists with experience in Java. Preferably, you will have experience with the fundamentals of machine learning and now have a desire to explore the area further, are up to grappling with the mathematical complexities of its algorithms, and you wish to learn the complete ins and outs of practical machine learning. What You Will Learn Master key Java machine learning libraries, and what kind of problem each can solve, with theory and practical guidance. Explore powerful techniques in each major category of machine learning such as classification, clustering, anomaly detection, graph modeling, and text mining. Apply machine learning to real-world data with methodologies, processes, applications, and analysis. Techniques and experiments developed around the latest specializations in machine learning, such as deep learning, stream data mining, and active and semi-supervised learning. Build high-performing, real-time, adaptive predictive models for batch- and stream-based big data learning using the latest tools and methodologies. Get a deeper understanding of technologies leading towards a more powerful AI applicable in various domains such as Security, Financial Crime, Internet of Things, social networking, and so on. In Detail Java is one of the main languages used by practicing data scientists; much of the Hadoop ecosystem is Java-based, and it is certainly the language that most production systems in Data Science are written in. If you know Java, Mastering Machine Learning with Java is your next step on the path to becoming an advanced practitioner in Data Science. This book aims to introduce you to an array of advanced techniques in machine learning, including classification, clustering, anomaly detection, stream learning, active learning, semi-supervised learning, probabilistic graph modeling, text mining, deep learning, and big data batch and stream machine learning. Accompanying each chapter are illustrative examples and real-world case studies that show how to apply the newly learned techniques using sound methodologies and the best Java-based tools available today. On completing this book, you will have an understanding of the tools and techniques for building powerful machine learning models to solve data science problems in just about any domain. Style and approach A practical guide to help you explore machine learning—and an array of Java-based tools and frameworks—with the help of practical examples and real-world use cases.
Book Synopsis A Beginner's Guide to Large Language Models by : Enamul Haque
Download or read book A Beginner's Guide to Large Language Models written by Enamul Haque and published by Enamul Haque. This book was released on 2024-07-25 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Beginner's Guide to Large Language Models: Conversational AI for Non-Technical Enthusiasts Step into the revolutionary world of artificial intelligence with "A Beginner's Guide to Large Language Models: Conversational AI for Non-Technical Enthusiasts." Whether you're a curious individual or a professional seeking to leverage AI in your field, this book demystifies the complexities of large language models (LLMs) with engaging, easy-to-understand explanations and practical insights. Explore the fascinating journey of AI from its early roots to the cutting-edge advancements that power today's conversational AI systems. Discover how LLMs, like ChatGPT and Google's Gemini, are transforming industries, enhancing productivity, and sparking creativity across the globe. With the guidance of this comprehensive and accessible guide, you'll gain a solid understanding of how LLMs work, their real-world applications, and the ethical considerations they entail. Packed with vivid examples, hands-on exercises, and real-life scenarios, this book will empower you to harness the full potential of LLMs. Learn to generate creative content, translate languages in real-time, summarise complex information, and even develop AI-powered applications—all without needing a technical background. You'll also find valuable insights into the evolving job landscape, equipping you with the knowledge to pursue a successful career in this dynamic field. This guide ensures that AI is not just an abstract concept but a tangible tool you can use to transform your everyday life and work. Dive into the future with confidence and curiosity, and discover the incredible possibilities that large language models offer. Join the AI revolution and unlock the secrets of the technology that's reshaping our world. "A Beginner's Guide to Large Language Models" is your key to understanding and mastering the power of conversational AI. Introduction This introduction sets the stage for understanding the evolution of artificial intelligence (AI) and large language models (LLMs). It highlights the promise of making complex AI concepts accessible to non-technical readers and outlines the unique approach of this book. Chapter 1: Demystifying AI and LLMs: A Journey Through Time This chapter introduces the basics of AI, using simple analogies and real-world examples. It traces the evolution of AI, from rule-based systems to machine learning and deep learning, leading to the emergence of LLMs. Key concepts such as tokens, vocabulary, and embeddings are explained to build a solid foundation for understanding how LLMs process and generate language. Chapter 2: Mastering Large Language Models Delving deeper into the mechanics of LLMs, this chapter covers the transformer architecture, attention mechanisms, and the processes involved in training and fine-tuning LLMs. It includes hands-on exercises with prompts and discusses advanced techniques like chain-of-thought prompting and prompt chaining to optimise LLM performance. Chapter 3: The LLM Toolbox: Unleashing the Power of Language AI This chapter explores the diverse applications of LLMs in text generation, language translation, summarisation, question answering, and code generation. It also introduces multimodal LLMs that handle both text and images, showcasing their impact on various creative and professional fields. Practical examples and real-life scenarios illustrate how these tools can enhance productivity and creativity. Chapter 4: LLMs in the Real World: Transforming Industries Highlighting the transformative impact of LLMs across different industries, this chapter covers their role in healthcare, finance, education, creative industries, and business. It discusses how LLMs are revolutionising tasks such as medical diagnosis, fraud detection, personalised tutoring, and content creation, and explores the future of work in an AI-powered world. Chapter 5: The Dark Side of LLMs: Ethical Concerns and Challenges Addressing the ethical challenges of LLMs, this chapter covers bias and fairness, privacy concerns, misuse of LLMs, security threats, and the transparency of AI decision-making. It also discusses ethical frameworks for responsible AI development and presents diverse perspectives on the risks and benefits of LLMs. Chapter 6: Mastering LLMs: Advanced Techniques and Strategies This chapter focuses on advanced techniques for leveraging LLMs, such as combining transformers with other AI models, fine-tuning open-source LLMs for specific tasks, and building LLM-powered applications. It provides detailed guidance on prompt engineering for various applications and includes a step-by-step guide to creating an AI-powered chatbot. Chapter 7: LLMs and the Future: A Glimpse into Tomorrow Looking ahead, this chapter explores emerging trends and potential breakthroughs in AI and LLM research. It discusses ethical AI development, insights from leading AI experts, and visions of a future where LLMs are integrated into everyday life. The chapter highlights the importance of building responsible AI systems that address societal concerns. Chapter 8: Your LLM Career Roadmap: Navigating the AI Job Landscape Focusing on the growing demand for LLM expertise, this chapter outlines various career paths in the AI field, such as LLM scientists, engineers, and prompt engineers. It provides resources for building the necessary skillsets and discusses the evolving job market, emphasising the importance of continuous learning and adaptability in a rapidly changing industry. Thought-Provoking Questions, Simple Exercises, and Real-Life Scenarios The book concludes with practical exercises and real-life scenarios to help readers apply their knowledge of LLMs. It includes thought-provoking questions to deepen understanding and provides resources and tools for further exploration of LLM applications. Tools to Help with Your Exercises This section lists tools and platforms for engaging with LLM exercises, such as OpenAI's Playground, Google Translate, and various IDEs for coding. Links to these tools are provided to facilitate hands-on learning and experimentation.
Book Synopsis Large Language Model-Based Solutions by : Shreyas Subramanian
Download or read book Large Language Model-Based Solutions written by Shreyas Subramanian and published by John Wiley & Sons. This book was released on 2024-04-02 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn to build cost-effective apps using Large Language Models In Large Language Model-Based Solutions: How to Deliver Value with Cost-Effective Generative AI Applications, Principal Data Scientist at Amazon Web Services, Shreyas Subramanian, delivers a practical guide for developers and data scientists who wish to build and deploy cost-effective large language model (LLM)-based solutions. In the book, you'll find coverage of a wide range of key topics, including how to select a model, pre- and post-processing of data, prompt engineering, and instruction fine tuning. The author sheds light on techniques for optimizing inference, like model quantization and pruning, as well as different and affordable architectures for typical generative AI (GenAI) applications, including search systems, agent assists, and autonomous agents. You'll also find: Effective strategies to address the challenge of the high computational cost associated with LLMs Assistance with the complexities of building and deploying affordable generative AI apps, including tuning and inference techniques Selection criteria for choosing a model, with particular consideration given to compact, nimble, and domain-specific models Perfect for developers and data scientists interested in deploying foundational models, or business leaders planning to scale out their use of GenAI, Large Language Model-Based Solutions will also benefit project leaders and managers, technical support staff, and administrators with an interest or stake in the subject.
Book Synopsis Demystifying Large Language Models by : James Chen
Download or read book Demystifying Large Language Models written by James Chen and published by James Chen. This book was released on 2024-04-25 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive guide aiming to demystify the world of transformers -- the architecture that powers Large Language Models (LLMs) like GPT and BERT. From PyTorch basics and mathematical foundations to implementing a Transformer from scratch, you'll gain a deep understanding of the inner workings of these models. That's just the beginning. Get ready to dive into the realm of pre-training your own Transformer from scratch, unlocking the power of transfer learning to fine-tune LLMs for your specific use cases, exploring advanced techniques like PEFT (Prompting for Efficient Fine-Tuning) and LoRA (Low-Rank Adaptation) for fine-tuning, as well as RLHF (Reinforcement Learning with Human Feedback) for detoxifying LLMs to make them aligned with human values and ethical norms. Step into the deployment of LLMs, delivering these state-of-the-art language models into the real-world, whether integrating them into cloud platforms or optimizing them for edge devices, this section ensures you're equipped with the know-how to bring your AI solutions to life. Whether you're a seasoned AI practitioner, a data scientist, or a curious developer eager to advance your knowledge on the powerful LLMs, this book is your ultimate guide to mastering these cutting-edge models. By translating convoluted concepts into understandable explanations and offering a practical hands-on approach, this treasure trove of knowledge is invaluable to both aspiring beginners and seasoned professionals. Table of Contents 1. INTRODUCTION 1.1 What is AI, ML, DL, Generative AI and Large Language Model 1.2 Lifecycle of Large Language Models 1.3 Whom This Book Is For 1.4 How This Book Is Organized 1.5 Source Code and Resources 2. PYTORCH BASICS AND MATH FUNDAMENTALS 2.1 Tensor and Vector 2.2 Tensor and Matrix 2.3 Dot Product 2.4 Softmax 2.5 Cross Entropy 2.6 GPU Support 2.7 Linear Transformation 2.8 Embedding 2.9 Neural Network 2.10 Bigram and N-gram Models 2.11 Greedy, Random Sampling and Beam 2.12 Rank of Matrices 2.13 Singular Value Decomposition (SVD) 2.14 Conclusion 3. TRANSFORMER 3.1 Dataset and Tokenization 3.2 Embedding 3.3 Positional Encoding 3.4 Layer Normalization 3.5 Feed Forward 3.6 Scaled Dot-Product Attention 3.7 Mask 3.8 Multi-Head Attention 3.9 Encoder Layer and Encoder 3.10 Decoder Layer and Decoder 3.11 Transformer 3.12 Training 3.13 Inference 3.14 Conclusion 4. PRE-TRAINING 4.1 Machine Translation 4.2 Dataset and Tokenization 4.3 Load Data in Batch 4.4 Pre-Training nn.Transformer Model 4.5 Inference 4.6 Popular Large Language Models 4.7 Computational Resources 4.8 Prompt Engineering and In-context Learning (ICL) 4.9 Prompt Engineering on FLAN-T5 4.10 Pipelines 4.11 Conclusion 5. FINE-TUNING 5.1 Fine-Tuning 5.2 Parameter Efficient Fine-tuning (PEFT) 5.3 Low-Rank Adaptation (LoRA) 5.4 Adapter 5.5 Prompt Tuning 5.6 Evaluation 5.7 Reinforcement Learning 5.8 Reinforcement Learning Human Feedback (RLHF) 5.9 Implementation of RLHF 5.10 Conclusion 6. DEPLOYMENT OF LLMS 6.1 Challenges and Considerations 6.2 Pre-Deployment Optimization 6.3 Security and Privacy 6.4 Deployment Architectures 6.5 Scalability and Load Balancing 6.6 Compliance and Ethics Review 6.7 Model Versioning and Updates 6.8 LLM-Powered Applications 6.9 Vector Database 6.10 LangChain 6.11 Chatbot, Example of LLM-Powered Application 6.12 WebUI, Example of LLM-Power Application 6.13 Future Trends and Challenges 6.14 Conclusion REFERENCES ABOUT THE AUTHOR
Book Synopsis Introduction to Large Language Models for Business Leaders by : I. Almeida
Download or read book Introduction to Large Language Models for Business Leaders written by I. Almeida and published by Now Next Later AI. This book was released on 2023-09-02 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Responsible AI Strategy Beyond Fear and Hype - 2024 Edition Shortlisted for the 2023 HARVEY CHUTE Book Awards recognizing emerging talent and outstanding works in the genre of Business and Enterprise Non-Fiction. Explore the transformative potential of technologies like GPT-4 and Claude 2. These large language models (LLMs) promise to reshape how businesses operate. Aimed at non-technical business leaders, this guide offers a pragmatic approach to leveraging LLMs for tangible benefits, while ensuring ethical considerations aren't sidelined. LLMs can refine processes in marketing, software development, HR, R&D, customer service, and even legal operations. But it's essential to approach them with a balanced view. In this guide, you'll: - Learn about the rapid advancements of LLMs. - Understand complex concepts in simple terms. - Discover practical business applications. - Get strategies for smooth integration. - Assess potential impacts on your team. - Delve into the ethics of deploying LLMs. With a clear aim to inform rather than influence, this book is your roadmap to adopting LLMs thoughtfully, maximizing benefits, and minimizing risks. Let's move beyond the noise and understand how LLMs can genuinely benefit your business. More Than a Book By purchasing this book, you will also be granted free access to the AI Academy platform. There you can view free course modules, test your knowledge through quizzes, attend webinars, and engage in discussion with other readers. You can also view, for free, the first module of the self-paced course "AI Fundamentals for Business Leaders," and enjoy video lessons and webinars. No credit card required. AI Academy by Now Next Later AI We are the most trusted and effective learning platform dedicated to empowering leaders with the knowledge and skills needed to harness the power of AI safely and ethically.
Book Synopsis Hands-On Large Language Models by : Jay Alammar
Download or read book Hands-On Large Language Models written by Jay Alammar and published by "O'Reilly Media, Inc.". This book was released on 2024-09-11 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: AI has acquired startling new language capabilities in just the past few years. Driven by the rapid advances in deep learning, language AI systems are able to write and understand text better than ever before. This trend enables the rise of new features, products, and entire industries. With this book, Python developers will learn the practical tools and concepts they need to use these capabilities today. You'll learn how to use the power of pre-trained large language models for use cases like copywriting and summarization; create semantic search systems that go beyond keyword matching; build systems that classify and cluster text to enable scalable understanding of large amounts of text documents; and use existing libraries and pre-trained models for text classification, search, and clusterings. This book also shows you how to: Build advanced LLM pipelines to cluster text documents and explore the topics they belong to Build semantic search engines that go beyond keyword search with methods like dense retrieval and rerankers Learn various use cases where these models can provide value Understand the architecture of underlying Transformer models like BERT and GPT Get a deeper understanding of how LLMs are trained Understanding how different methods of fine-tuning optimize LLMs for specific applications (generative model fine-tuning, contrastive fine-tuning, in-context learning, etc.)
Book Synopsis Deep Learning for Coders with fastai and PyTorch by : Jeremy Howard
Download or read book Deep Learning for Coders with fastai and PyTorch written by Jeremy Howard and published by O'Reilly Media. This book was released on 2020-06-29 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
Book Synopsis Artificial Intelligence and Large Language Models by : Kutub Thakur
Download or read book Artificial Intelligence and Large Language Models written by Kutub Thakur and published by CRC Press. This book was released on 2024-07-12 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Having been catapulted into public discourse in the last few years, this book serves as an in-depth exploration of the ever-evolving domain of artificial intelligence (AI), large language models, and ChatGPT. It provides a meticulous and thorough analysis of AI, ChatGPT technology, and their prospective trajectories given the current trend, in addition to tracing the significant advancements that have materialized over time. Key Features: Discusses the fundamentals of AI for general readers Introduces readers to the ChatGPT chatbot and how it works Covers natural language processing (NLP), the foundational building block of ChatGPT Introduces readers to the deep learning transformer architecture Covers the fundamentals of ChatGPT training for practitioners Illustrated and organized in an accessible manner, this textbook contains particular appeal to students and course convenors at the undergraduate and graduate level, as well as a reference source for general readers.