Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Large Complex Data Streams Using Big Data
Download Large Complex Data Streams Using Big Data full books in PDF, epub, and Kindle. Read online Large Complex Data Streams Using Big Data ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Large & Complex Data Streams Using Big Data. by : Dr. Ashad ullah Qureshi
Download or read book Large & Complex Data Streams Using Big Data. written by Dr. Ashad ullah Qureshi and published by Concepts Books Publication. This book was released on 2022-06-01 with total page 75 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fifteen years ago, because the basic computing unit was physical servers, and different user used different physical servers dedicatedly, the attacking surface to an application was limited to inputs and outputs from and to the hosting physical server. Luckily, security specialists only had to keep eyes on the possible physical interfaces to assure the application was relatively secured since the trust boundary is minimal.
Book Synopsis Taming The Big Data Tidal Wave by : Bill Franks
Download or read book Taming The Big Data Tidal Wave written by Bill Franks and published by John Wiley & Sons. This book was released on 2012-03-19 with total page 42 pages. Available in PDF, EPUB and Kindle. Book excerpt: You receive an e-mail. It contains an offer for a complete personal computer system. It seems like the retailer read your mind since you were exploring computers on their web site just a few hours prior.... As you drive to the store to buy the computer bundle, you get an offer for a discounted coffee from the coffee shop you are getting ready to drive past. It says that since you’re in the area, you can get 10% off if you stop by in the next 20 minutes.... As you drink your coffee, you receive an apology from the manufacturer of a product that you complained about yesterday on your Facebook page, as well as on the company’s web site.... Finally, once you get back home, you receive notice of a special armor upgrade available for purchase in your favorite online video game. It is just what is needed to get past some spots you’ve been struggling with.... Sound crazy? Are these things that can only happen in the distant future? No. All of these scenarios are possible today! Big data. Advanced analytics. Big data analytics. It seems you can’t escape such terms today. Everywhere you turn people are discussing, writing about, and promoting big data and advanced analytics. Well, you can now add this book to the discussion. What is real and what is hype? Such attention can lead one to the suspicion that perhaps the analysis of big data is something that is more hype than substance. While there has been a lot of hype over the past few years, the reality is that we are in a transformative era in terms of analytic capabilities and the leveraging of massive amounts of data. If you take the time to cut through the sometimes-over-zealous hype present in the media, you’ll find something very real and very powerful underneath it. With big data, the hype is driven by genuine excitement and anticipation of the business and consumer benefits that analyzing it will yield over time. Big data is the next wave of new data sources that will drive the next wave of analytic innovation in business, government, and academia. These innovations have the potential to radically change how organizations view their business. The analysis that big data enables will lead to decisions that are more informed and, in some cases, different from what they are today. It will yield insights that many can only dream about today. As you’ll see, there are many consistencies with the requirements to tame big data and what has always been needed to tame new data sources. However, the additional scale of big data necessitates utilizing the newest tools, technologies, methods, and processes. The old way of approaching analysis just won’t work. It is time to evolve the world of advanced analytics to the next level. That’s what this book is about. Taming the Big Data Tidal Wave isn’t just the title of this book, but rather an activity that will determine which businesses win and which lose in the next decade. By preparing and taking the initiative, organizations can ride the big data tidal wave to success rather than being pummeled underneath the crushing surf. What do you need to know and how do you prepare in order to start taming big data and generating exciting new analytics from it? Sit back, get comfortable, and prepare to find out!
Book Synopsis Processing & Analysing Large & Computer Data Streams using Big Data by : Dr. Ashad Ullah Qureshi
Download or read book Processing & Analysing Large & Computer Data Streams using Big Data written by Dr. Ashad Ullah Qureshi and published by Concepts Books Publication. This book was released on 2022-06-01 with total page 44 pages. Available in PDF, EPUB and Kindle. Book excerpt: The emerging large datasets have made efficient data processing a much more difficult task for the traditional methodologies. Invariably, datasets continue to increase rapidly in size with time. The purpose of this research is to give an overview of some of the tools and techniques that can be utilized to manage and analyze large datasets. We propose a faster way to catalogue and retrieve data by creating a directory file – more specifically, an improved method that would allow file retrieval based on its time and date. This method eliminates the process of searching the entire content of files and reduces the time it takes to locate the selected data. We also implement the nearest search algorithm in an event where the searched query is not found. The algorithm sorts through data to find the closest points that are within close proximity to the searched query. We also offer an efficient data reduction method that effectively condenses the amount of data. The algorithm enables users to store the desired amount of data in a file and decrease the time in which observations are retrieved for processing. This is achieved by using a reduced standard deviation range to minimize the original data and keeping the dataset to a significant smaller dataset size.
Book Synopsis New Horizons for a Data-Driven Economy by : José María Cavanillas
Download or read book New Horizons for a Data-Driven Economy written by José María Cavanillas and published by Springer. This book was released on 2016-04-04 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book readers will find technological discussions on the existing and emerging technologies across the different stages of the big data value chain. They will learn about legal aspects of big data, the social impact, and about education needs and requirements. And they will discover the business perspective and how big data technology can be exploited to deliver value within different sectors of the economy. The book is structured in four parts: Part I “The Big Data Opportunity” explores the value potential of big data with a particular focus on the European context. It also describes the legal, business and social dimensions that need to be addressed, and briefly introduces the European Commission’s BIG project. Part II “The Big Data Value Chain” details the complete big data lifecycle from a technical point of view, ranging from data acquisition, analysis, curation and storage, to data usage and exploitation. Next, Part III “Usage and Exploitation of Big Data” illustrates the value creation possibilities of big data applications in various sectors, including industry, healthcare, finance, energy, media and public services. Finally, Part IV “A Roadmap for Big Data Research” identifies and prioritizes the cross-sectorial requirements for big data research, and outlines the most urgent and challenging technological, economic, political and societal issues for big data in Europe. This compendium summarizes more than two years of work performed by a leading group of major European research centers and industries in the context of the BIG project. It brings together research findings, forecasts and estimates related to this challenging technological context that is becoming the major axis of the new digitally transformed business environment.
Book Synopsis Scalable Big Data Architecture by : Bahaaldine Azarmi
Download or read book Scalable Big Data Architecture written by Bahaaldine Azarmi and published by Apress. This book was released on 2015-12-31 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights the different types of data architecture and illustrates the many possibilities hidden behind the term "Big Data", from the usage of No-SQL databases to the deployment of stream analytics architecture, machine learning, and governance. Scalable Big Data Architecture covers real-world, concrete industry use cases that leverage complex distributed applications , which involve web applications, RESTful API, and high throughput of large amount of data stored in highly scalable No-SQL data stores such as Couchbase and Elasticsearch. This book demonstrates how data processing can be done at scale from the usage of NoSQL datastores to the combination of Big Data distribution. When the data processing is too complex and involves different processing topology like long running jobs, stream processing, multiple data sources correlation, and machine learning, it’s often necessary to delegate the load to Hadoop or Spark and use the No-SQL to serve processed data in real time. This book shows you how to choose a relevant combination of big data technologies available within the Hadoop ecosystem. It focuses on processing long jobs, architecture, stream data patterns, log analysis, and real time analytics. Every pattern is illustrated with practical examples, which use the different open sourceprojects such as Logstash, Spark, Kafka, and so on. Traditional data infrastructures are built for digesting and rendering data synthesis and analytics from large amount of data. This book helps you to understand why you should consider using machine learning algorithms early on in the project, before being overwhelmed by constraints imposed by dealing with the high throughput of Big data. Scalable Big Data Architecture is for developers, data architects, and data scientists looking for a better understanding of how to choose the most relevant pattern for a Big Data project and which tools to integrate into that pattern.
Book Synopsis Anomaly Detection and Complex Event Processing Over IoT Data Streams by : Patrick Schneider
Download or read book Anomaly Detection and Complex Event Processing Over IoT Data Streams written by Patrick Schneider and published by Academic Press. This book was released on 2022-01-07 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Anomaly Detection and Complex Event Processing over IoT Data Streams: With Application to eHealth and Patient Data Monitoring presents advanced processing techniques for IoT data streams and the anomaly detection algorithms over them. The book brings new advances and generalized techniques for processing IoT data streams, semantic data enrichment with contextual information at Edge, Fog and Cloud as well as complex event processing in IoT applications. The book comprises fundamental models, concepts and algorithms, architectures and technological solutions as well as their application to eHealth. Case studies, such as the bio-metric signals stream processing are presented –the massive amount of raw ECG signals from the sensors are processed dynamically across the data pipeline and classified with modern machine learning approaches including the Hierarchical Temporal Memory and Deep Learning algorithms. The book discusses adaptive solutions to IoT stream processing that can be extended to different use cases from different fields of eHealth, to enable a complex analysis of patient data in a historical, predictive and even prescriptive application scenarios. The book ends with a discussion on ethics, emerging research trends, issues and challenges of IoT data stream processing. - Provides the state-of-the-art in IoT Data Stream Processing, Semantic Data Enrichment, Reasoning and Knowledge - Covers extraction (Anomaly Detection) - Illustrates new, scalable and reliable processing techniques based on IoT stream technologies - Offers applications to new, real-time anomaly detection scenarios in the health domain
Book Synopsis Big Data Preprocessing by : Julián Luengo
Download or read book Big Data Preprocessing written by Julián Luengo and published by Springer Nature. This book was released on 2020-03-16 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a comprehensible overview of Big Data Preprocessing, which includes a formal description of each problem. It also focuses on the most relevant proposed solutions. This book illustrates actual implementations of algorithms that helps the reader deal with these problems. This book stresses the gap that exists between big, raw data and the requirements of quality data that businesses are demanding. This is called Smart Data, and to achieve Smart Data the preprocessing is a key step, where the imperfections, integration tasks and other processes are carried out to eliminate superfluous information. The authors present the concept of Smart Data through data preprocessing in Big Data scenarios and connect it with the emerging paradigms of IoT and edge computing, where the end points generate Smart Data without completely relying on the cloud. Finally, this book provides some novel areas of study that are gathering a deeper attention on the Big Data preprocessing. Specifically, it considers the relation with Deep Learning (as of a technique that also relies in large volumes of data), the difficulty of finding the appropriate selection and concatenation of preprocessing techniques applied and some other open problems. Practitioners and data scientists who work in this field, and want to introduce themselves to preprocessing in large data volume scenarios will want to purchase this book. Researchers that work in this field, who want to know which algorithms are currently implemented to help their investigations, may also be interested in this book.
Book Synopsis Frontiers in Massive Data Analysis by : National Research Council
Download or read book Frontiers in Massive Data Analysis written by National Research Council and published by National Academies Press. This book was released on 2013-09-03 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining of massive data sets is transforming the way we think about crisis response, marketing, entertainment, cybersecurity and national intelligence. Collections of documents, images, videos, and networks are being thought of not merely as bit strings to be stored, indexed, and retrieved, but as potential sources of discovery and knowledge, requiring sophisticated analysis techniques that go far beyond classical indexing and keyword counting, aiming to find relational and semantic interpretations of the phenomena underlying the data. Frontiers in Massive Data Analysis examines the frontier of analyzing massive amounts of data, whether in a static database or streaming through a system. Data at that scale-terabytes and petabytes-is increasingly common in science (e.g., particle physics, remote sensing, genomics), Internet commerce, business analytics, national security, communications, and elsewhere. The tools that work to infer knowledge from data at smaller scales do not necessarily work, or work well, at such massive scale. New tools, skills, and approaches are necessary, and this report identifies many of them, plus promising research directions to explore. Frontiers in Massive Data Analysis discusses pitfalls in trying to infer knowledge from massive data, and it characterizes seven major classes of computation that are common in the analysis of massive data. Overall, this report illustrates the cross-disciplinary knowledge-from computer science, statistics, machine learning, and application disciplines-that must be brought to bear to make useful inferences from massive data.
Book Synopsis Big Data and Business Analytics by : Jay Liebowitz
Download or read book Big Data and Business Analytics written by Jay Liebowitz and published by CRC Press. This book was released on 2016-04-19 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The chapters in this volume offer useful case studies, technical roadmaps, lessons learned, and a few prescriptions todo this, avoid that.'"-From the Foreword by Joe LaCugna, Ph.D., Enterprise Analytics and Business Intelligence, Starbucks Coffee CompanyWith the growing barrage of "big data," it becomes vitally important for organizations to mak
Book Synopsis Big Data For Dummies by : Judith S. Hurwitz
Download or read book Big Data For Dummies written by Judith S. Hurwitz and published by John Wiley & Sons. This book was released on 2013-04-02 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Find the right big data solution for your business or organization Big data management is one of the major challenges facing business, industry, and not-for-profit organizations. Data sets such as customer transactions for a mega-retailer, weather patterns monitored by meteorologists, or social network activity can quickly outpace the capacity of traditional data management tools. If you need to develop or manage big data solutions, you'll appreciate how these four experts define, explain, and guide you through this new and often confusing concept. You'll learn what it is, why it matters, and how to choose and implement solutions that work. Effectively managing big data is an issue of growing importance to businesses, not-for-profit organizations, government, and IT professionals Authors are experts in information management, big data, and a variety of solutions Explains big data in detail and discusses how to select and implement a solution, security concerns to consider, data storage and presentation issues, analytics, and much more Provides essential information in a no-nonsense, easy-to-understand style that is empowering Big Data For Dummies cuts through the confusion and helps you take charge of big data solutions for your organization.
Book Synopsis Knowledge Graphs and Big Data Processing by : Valentina Janev
Download or read book Knowledge Graphs and Big Data Processing written by Valentina Janev and published by Springer Nature. This book was released on 2020-07-15 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book is part of the LAMBDA Project (Learning, Applying, Multiplying Big Data Analytics), funded by the European Union, GA No. 809965. Data Analytics involves applying algorithmic processes to derive insights. Nowadays it is used in many industries to allow organizations and companies to make better decisions as well as to verify or disprove existing theories or models. The term data analytics is often used interchangeably with intelligence, statistics, reasoning, data mining, knowledge discovery, and others. The goal of this book is to introduce some of the definitions, methods, tools, frameworks, and solutions for big data processing, starting from the process of information extraction and knowledge representation, via knowledge processing and analytics to visualization, sense-making, and practical applications. Each chapter in this book addresses some pertinent aspect of the data processing chain, with a specific focus on understanding Enterprise Knowledge Graphs, Semantic Big Data Architectures, and Smart Data Analytics solutions. This book is addressed to graduate students from technical disciplines, to professional audiences following continuous education short courses, and to researchers from diverse areas following self-study courses. Basic skills in computer science, mathematics, and statistics are required.
Book Synopsis Big and Complex Data Analysis by : S. Ejaz Ahmed
Download or read book Big and Complex Data Analysis written by S. Ejaz Ahmed and published by Springer. This book was released on 2017-03-21 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume conveys some of the surprises, puzzles and success stories in high-dimensional and complex data analysis and related fields. Its peer-reviewed contributions showcase recent advances in variable selection, estimation and prediction strategies for a host of useful models, as well as essential new developments in the field. The continued and rapid advancement of modern technology now allows scientists to collect data of increasingly unprecedented size and complexity. Examples include epigenomic data, genomic data, proteomic data, high-resolution image data, high-frequency financial data, functional and longitudinal data, and network data. Simultaneous variable selection and estimation is one of the key statistical problems involved in analyzing such big and complex data. The purpose of this book is to stimulate research and foster interaction between researchers in the area of high-dimensional data analysis. More concretely, its goals are to: 1) highlight and expand the breadth of existing methods in big data and high-dimensional data analysis and their potential for the advancement of both the mathematical and statistical sciences; 2) identify important directions for future research in the theory of regularization methods, in algorithmic development, and in methodologies for different application areas; and 3) facilitate collaboration between theoretical and subject-specific researchers.
Book Synopsis Statistical Process Control and Data Analytics by : John Oakland
Download or read book Statistical Process Control and Data Analytics written by John Oakland and published by Taylor & Francis. This book was released on 2024-09-02 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: The business, commercial and public-sector world has changed dramatically since John Oakland wrote the first edition of Statistical Process Control in the mid-1980s. Then, people were rediscovering statistical methods of ‘quality control,’ and the book responded to an often desperate need to find out about the techniques and use them on data. Pressure over time from organizations supplying directly to the consumer, typically in the automotive and high technology sectors, forced those in charge of the supplying, production and service operations to think more about preventing problems than how to find and fix them. Subsequent editions retained the ‘tool kit’ approach of the first but included some of the ‘philosophy’ behind the techniques and their use. Now entitled Statistical Process Control and Data Analytics, this revised and updated eighth edition retains its focus on processes that require understanding, have variation, must be properly controlled, have a capability and need improvement – as reflected in the five sections of the book. In this book the authors provide not only an instructional guide for the tools but communicate the management practices which have become so vital to success in organizations throughout the world. The book is supported by the authors' extensive consulting work with thousands of organizations worldwide. A new chapter on data governance and data analytics reflects the increasing importance of big data in today’s business environment. Fully updated to include real-life case studies, new research based on client work from an array of industries and integration with the latest computer methods and software, the book also retains its valued textbook quality through clear learning objectives and online end-of-chapter discussion questions. It can still serve as a textbook for both student and practicing engineers, scientists, technologists, managers and anyone wishing to understand or implement modern statistical process control techniques and data analytics.
Book Synopsis Big Data and Information Theory by : Jiuping Xu
Download or read book Big Data and Information Theory written by Jiuping Xu and published by Routledge. This book was released on 2022-06-02 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big Data and Information Theory are a binding force between various areas of knowledge that allow for societal advancement. Rapid development of data analytic and information theory allows companies to store vast amounts of information about production, inventory, service, and consumer activities. More powerful CPUs and cloud computing make it possible to do complex optimization instead of using heuristic algorithms, as well as instant rather than offline decision-making. The era of "big data" challenges includes analysis, capture, curation, search, sharing, storage, transfer, visualization, and privacy violations. Big data calls for better integration of optimization, statistics, and data mining. In response to these challenges this book brings together leading researchers and engineers to exchange and share their experiences and research results about big data and information theory applications in various areas. This book covers a broad range of topics including statistics, data mining, data warehouse implementation, engineering management in large-scale infrastructure systems, data-driven sustainable supply chain network, information technology service offshoring project issues, online rumors governance, preliminary cost estimation, and information system project selection. The chapters in this book were originally published in the journal, International Journal of Management Science and Engineering Management.
Book Synopsis Big Data in Complex Systems by : Aboul Ella Hassanien
Download or read book Big Data in Complex Systems written by Aboul Ella Hassanien and published by Springer. This book was released on 2015-01-02 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides challenges and Opportunities with updated, in-depth material on the application of Big data to complex systems in order to find solutions for the challenges and problems facing big data sets applications. Much data today is not natively in structured format; for example, tweets and blogs are weakly structured pieces of text, while images and video are structured for storage and display, but not for semantic content and search. Therefore transforming such content into a structured format for later analysis is a major challenge. Data analysis, organization, retrieval, and modeling are other foundational challenges treated in this book. The material of this book will be useful for researchers and practitioners in the field of big data as well as advanced undergraduate and graduate students. Each of the 17 chapters in the book opens with a chapter abstract and key terms list. The chapters are organized along the lines of problem description, related works, and analysis of the results and comparisons are provided whenever feasible.
Book Synopsis The Elements of Big Data Value by : Edward Curry
Download or read book The Elements of Big Data Value written by Edward Curry and published by Springer Nature. This book was released on 2021-08-01 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book presents the foundations of the Big Data research and innovation ecosystem and the associated enablers that facilitate delivering value from data for business and society. It provides insights into the key elements for research and innovation, technical architectures, business models, skills, and best practices to support the creation of data-driven solutions and organizations. The book is a compilation of selected high-quality chapters covering best practices, technologies, experiences, and practical recommendations on research and innovation for big data. The contributions are grouped into four parts: · Part I: Ecosystem Elements of Big Data Value focuses on establishing the big data value ecosystem using a holistic approach to make it attractive and valuable to all stakeholders. · Part II: Research and Innovation Elements of Big Data Value details the key technical and capability challenges to be addressed for delivering big data value. · Part III: Business, Policy, and Societal Elements of Big Data Value investigates the need to make more efficient use of big data and understanding that data is an asset that has significant potential for the economy and society. · Part IV: Emerging Elements of Big Data Value explores the critical elements to maximizing the future potential of big data value. Overall, readers are provided with insights which can support them in creating data-driven solutions, organizations, and productive data ecosystems. The material represents the results of a collective effort undertaken by the European data community as part of the Big Data Value Public-Private Partnership (PPP) between the European Commission and the Big Data Value Association (BDVA) to boost data-driven digital transformation.
Book Synopsis Second International Conference on Computer Networks and Communication Technologies by : S. Smys
Download or read book Second International Conference on Computer Networks and Communication Technologies written by S. Smys and published by Springer Nature. This book was released on 2020-01-21 with total page 968 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents new communication and networking technologies, an area that has gained significant research attention from both academia and industry in recent years. It also discusses the development of more intelligent and efficient communication technologies, which are an essential part of current day-to-day life, and reports on recent innovations in technologies, architectures, and standards relating to these technologies. The book includes research that spans a wide range of communication and networking technologies, including wireless sensor networks, big data, Internet of Things, optical and telecommunication networks, artificial intelligence, cryptography, next-generation networks, cloud computing, and natural language processing. Moreover, it focuses on novel solutions in the context of communication and networking challenges, such as optimization algorithms, network interoperability, scalable network clustering, multicasting and fault-tolerant techniques, network authentication mechanisms, and predictive analytics.