Knowledge-Based Clustering

Download Knowledge-Based Clustering PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0471708593
Total Pages : 336 pages
Book Rating : 4.4/5 (717 download)

DOWNLOAD NOW!


Book Synopsis Knowledge-Based Clustering by : Witold Pedrycz

Download or read book Knowledge-Based Clustering written by Witold Pedrycz and published by John Wiley & Sons. This book was released on 2005-05-13 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive coverage of emerging and current technology dealing with heterogeneous sources of information, including data, design hints, reinforcement signals from external datasets, and related topics Covers all necessary prerequisites, and if necessary,additional explanations of more advanced topics, to make abstract concepts more tangible Includes illustrative material andwell-known experimentsto offer hands-on experience

Transcriptome Analysis

Download Transcriptome Analysis PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 8876426426
Total Pages : 196 pages
Book Rating : 4.8/5 (764 download)

DOWNLOAD NOW!


Book Synopsis Transcriptome Analysis by : Alessandro Cellerino

Download or read book Transcriptome Analysis written by Alessandro Cellerino and published by Springer. This book was released on 2018-06-14 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this book is to be an accessible guide for undergraduate and graduate students to the new field of data-driven biology. Next-generation sequencing technologies have put genome-scale analysis of gene expression into the standard toolbox of experimental biologists. Yet, biological interpretation of high-dimensional data is made difficult by the lack of a common language between experimental and data scientists. By combining theory with practical examples of how specific tools were used to obtain novel insights in biology, particularly in the neurosciences, the book intends to teach students how to design, analyse, and extract biological knowledge from transcriptome sequencing experiments. Undergraduate and graduate students in biomedical and quantitative sciences will benefit from this text as well as academics untrained in the subject.

Data Clustering

Download Data Clustering PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1466558229
Total Pages : 648 pages
Book Rating : 4.4/5 (665 download)

DOWNLOAD NOW!


Book Synopsis Data Clustering by : Charu C. Aggarwal

Download or read book Data Clustering written by Charu C. Aggarwal and published by CRC Press. This book was released on 2013-08-21 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research on the problem of clustering tends to be fragmented across the pattern recognition, database, data mining, and machine learning communities. Addressing this problem in a unified way, Data Clustering: Algorithms and Applications provides complete coverage of the entire area of clustering, from basic methods to more refined and complex data clustering approaches. It pays special attention to recent issues in graphs, social networks, and other domains. The book focuses on three primary aspects of data clustering: Methods, describing key techniques commonly used for clustering, such as feature selection, agglomerative clustering, partitional clustering, density-based clustering, probabilistic clustering, grid-based clustering, spectral clustering, and nonnegative matrix factorization Domains, covering methods used for different domains of data, such as categorical data, text data, multimedia data, graph data, biological data, stream data, uncertain data, time series clustering, high-dimensional clustering, and big data Variations and Insights, discussing important variations of the clustering process, such as semisupervised clustering, interactive clustering, multiview clustering, cluster ensembles, and cluster validation In this book, top researchers from around the world explore the characteristics of clustering problems in a variety of application areas. They also explain how to glean detailed insight from the clustering process—including how to verify the quality of the underlying clusters—through supervision, human intervention, or the automated generation of alternative clusters.

Cluster Analysis for Applications

Download Cluster Analysis for Applications PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 1483191397
Total Pages : 376 pages
Book Rating : 4.4/5 (831 download)

DOWNLOAD NOW!


Book Synopsis Cluster Analysis for Applications by : Michael R. Anderberg

Download or read book Cluster Analysis for Applications written by Michael R. Anderberg and published by Academic Press. This book was released on 2014-05-10 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cluster Analysis for Applications deals with methods and various applications of cluster analysis. Topics covered range from variables and scales to measures of association among variables and among data units. Conceptual problems in cluster analysis are discussed, along with hierarchical and non-hierarchical clustering methods. The necessary elements of data analysis, statistics, cluster analysis, and computer implementation are integrated vertically to cover the complete path from raw data to a finished analysis. Comprised of 10 chapters, this book begins with an introduction to the subject of cluster analysis and its uses as well as category sorting problems and the need for cluster analysis algorithms. The next three chapters give a detailed account of variables and association measures, with emphasis on strategies for dealing with problems containing variables of mixed types. Subsequent chapters focus on the central techniques of cluster analysis with particular reference to computational considerations; interpretation of clustering results; and techniques and strategies for making the most effective use of cluster analysis. The final chapter suggests an approach for the evaluation of alternative clustering methods. The presentation is capped with a complete set of implementing computer programs listed in the Appendices to make the use of cluster analysis as painless and free of mechanical error as is possible. This monograph is intended for students and workers who have encountered the notion of cluster analysis.

Model-Based Clustering and Classification for Data Science

Download Model-Based Clustering and Classification for Data Science PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108640591
Total Pages : 447 pages
Book Rating : 4.1/5 (86 download)

DOWNLOAD NOW!


Book Synopsis Model-Based Clustering and Classification for Data Science by : Charles Bouveyron

Download or read book Model-Based Clustering and Classification for Data Science written by Charles Bouveyron and published by Cambridge University Press. This book was released on 2019-07-25 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cluster analysis finds groups in data automatically. Most methods have been heuristic and leave open such central questions as: how many clusters are there? Which method should I use? How should I handle outliers? Classification assigns new observations to groups given previously classified observations, and also has open questions about parameter tuning, robustness and uncertainty assessment. This book frames cluster analysis and classification in terms of statistical models, thus yielding principled estimation, testing and prediction methods, and sound answers to the central questions. It builds the basic ideas in an accessible but rigorous way, with extensive data examples and R code; describes modern approaches to high-dimensional data and networks; and explains such recent advances as Bayesian regularization, non-Gaussian model-based clustering, cluster merging, variable selection, semi-supervised and robust classification, clustering of functional data, text and images, and co-clustering. Written for advanced undergraduates in data science, as well as researchers and practitioners, it assumes basic knowledge of multivariate calculus, linear algebra, probability and statistics.

Data Mining and Knowledge Discovery Handbook

Download Data Mining and Knowledge Discovery Handbook PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 038725465X
Total Pages : 1378 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Data Mining and Knowledge Discovery Handbook by : Oded Maimon

Download or read book Data Mining and Knowledge Discovery Handbook written by Oded Maimon and published by Springer Science & Business Media. This book was released on 2006-05-28 with total page 1378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining and Knowledge Discovery Handbook organizes all major concepts, theories, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD) into a coherent and unified repository. This book first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. This volume concludes with in-depth descriptions of data mining applications in various interdisciplinary industries including finance, marketing, medicine, biology, engineering, telecommunications, software, and security. Data Mining and Knowledge Discovery Handbook is designed for research scientists and graduate-level students in computer science and engineering. This book is also suitable for professionals in fields such as computing applications, information systems management, and strategic research management.

Data Clustering: Theory, Algorithms, and Applications, Second Edition

Download Data Clustering: Theory, Algorithms, and Applications, Second Edition PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611976332
Total Pages : 430 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Data Clustering: Theory, Algorithms, and Applications, Second Edition by : Guojun Gan

Download or read book Data Clustering: Theory, Algorithms, and Applications, Second Edition written by Guojun Gan and published by SIAM. This book was released on 2020-11-10 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data clustering, also known as cluster analysis, is an unsupervised process that divides a set of objects into homogeneous groups. Since the publication of the first edition of this monograph in 2007, development in the area has exploded, especially in clustering algorithms for big data and open-source software for cluster analysis. This second edition reflects these new developments, covers the basics of data clustering, includes a list of popular clustering algorithms, and provides program code that helps users implement clustering algorithms. Data Clustering: Theory, Algorithms and Applications, Second Edition will be of interest to researchers, practitioners, and data scientists as well as undergraduate and graduate students.

Data Clustering in C++

Download Data Clustering in C++ PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439862249
Total Pages : 520 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Data Clustering in C++ by : Guojun Gan

Download or read book Data Clustering in C++ written by Guojun Gan and published by CRC Press. This book was released on 2011-03-28 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data clustering is a highly interdisciplinary field, the goal of which is to divide a set of objects into homogeneous groups such that objects in the same group are similar and objects in different groups are quite distinct. Thousands of theoretical papers and a number of books on data clustering have been published over the past 50 years. However,

The Mathematics of Inheritance Systems

Download The Mathematics of Inheritance Systems PDF Online Free

Author :
Publisher : Morgan Kaufmann
ISBN 13 : 9780934613064
Total Pages : 240 pages
Book Rating : 4.6/5 (13 download)

DOWNLOAD NOW!


Book Synopsis The Mathematics of Inheritance Systems by : David S. Touretzky

Download or read book The Mathematics of Inheritance Systems written by David S. Touretzky and published by Morgan Kaufmann. This book was released on 1986 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Clustering Algorithms

Download Clustering Algorithms PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 :
Total Pages : 374 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Clustering Algorithms by : John A. Hartigan

Download or read book Clustering Algorithms written by John A. Hartigan and published by John Wiley & Sons. This book was released on 1975 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Shows how Galileo, Newton, and Einstein tried to explain gravity. Discusses the concept of microgravity and NASA's research on gravity and microgravity.

Advances in Data Mining. Applications and Theoretical Aspects

Download Advances in Data Mining. Applications and Theoretical Aspects PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319627015
Total Pages : 356 pages
Book Rating : 4.3/5 (196 download)

DOWNLOAD NOW!


Book Synopsis Advances in Data Mining. Applications and Theoretical Aspects by : Petra Perner

Download or read book Advances in Data Mining. Applications and Theoretical Aspects written by Petra Perner and published by Springer. This book was released on 2017-06-30 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 17th Industrial Conference on Advances in Data Mining, ICDM 2017, held in New York, NY, USA, in July 2017. The 27 revised full papers presented were carefully reviewed and selected from 71 submissions. The topics range from theoretical aspects of data mining to applications of data mining, such as in multimedia data, in marketing, in medicine, and in process control in industry and society.

Learning to Learn

Download Learning to Learn PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461555299
Total Pages : 346 pages
Book Rating : 4.4/5 (615 download)

DOWNLOAD NOW!


Book Synopsis Learning to Learn by : Sebastian Thrun

Download or read book Learning to Learn written by Sebastian Thrun and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past three decades or so, research on machine learning and data mining has led to a wide variety of algorithms that learn general functions from experience. As machine learning is maturing, it has begun to make the successful transition from academic research to various practical applications. Generic techniques such as decision trees and artificial neural networks, for example, are now being used in various commercial and industrial applications. Learning to Learn is an exciting new research direction within machine learning. Similar to traditional machine-learning algorithms, the methods described in Learning to Learn induce general functions from experience. However, the book investigates algorithms that can change the way they generalize, i.e., practice the task of learning itself, and improve on it. To illustrate the utility of learning to learn, it is worthwhile comparing machine learning with human learning. Humans encounter a continual stream of learning tasks. They do not just learn concepts or motor skills, they also learn bias, i.e., they learn how to generalize. As a result, humans are often able to generalize correctly from extremely few examples - often just a single example suffices to teach us a new thing. A deeper understanding of computer programs that improve their ability to learn can have a large practical impact on the field of machine learning and beyond. In recent years, the field has made significant progress towards a theory of learning to learn along with practical new algorithms, some of which led to impressive results in real-world applications. Learning to Learn provides a survey of some of the most exciting new research approaches, written by leading researchers in the field. Its objective is to investigate the utility and feasibility of computer programs that can learn how to learn, both from a practical and a theoretical point of view.

Knowledge-Based Intelligent Information and Engineering Systems

Download Knowledge-Based Intelligent Information and Engineering Systems PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540465391
Total Pages : 1368 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Knowledge-Based Intelligent Information and Engineering Systems by : Bogdan Gabrys

Download or read book Knowledge-Based Intelligent Information and Engineering Systems written by Bogdan Gabrys and published by Springer. This book was released on 2006-10-11 with total page 1368 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three volume set LNAI 4251, LNAI 4252, and LNAI 4253 constitutes the refereed proceedings of the 10th International Conference on Knowledge-Based Intelligent Information and Engineering Systems, KES 2006, held in Bournemouth, UK, in October 2006. The 480 revised papers presented were carefully reviewed and selected from about 1400 submissions. The papers present a wealth of original research results from the field of intelligent information processing.

KDD-96

Download KDD-96 PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 414 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis KDD-96 by : Evangelos Simoudis

Download or read book KDD-96 written by Evangelos Simoudis and published by . This book was released on 1996 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Encyclopedia of Machine Learning

Download Encyclopedia of Machine Learning PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387307680
Total Pages : 1061 pages
Book Rating : 4.3/5 (873 download)

DOWNLOAD NOW!


Book Synopsis Encyclopedia of Machine Learning by : Claude Sammut

Download or read book Encyclopedia of Machine Learning written by Claude Sammut and published by Springer Science & Business Media. This book was released on 2011-03-28 with total page 1061 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive encyclopedia, in A-Z format, provides easy access to relevant information for those seeking entry into any aspect within the broad field of Machine Learning. Most of the entries in this preeminent work include useful literature references.

Practical Guide to Cluster Analysis in R

Download Practical Guide to Cluster Analysis in R PDF Online Free

Author :
Publisher : STHDA
ISBN 13 : 1542462703
Total Pages : 168 pages
Book Rating : 4.5/5 (424 download)

DOWNLOAD NOW!


Book Synopsis Practical Guide to Cluster Analysis in R by : Alboukadel Kassambara

Download or read book Practical Guide to Cluster Analysis in R written by Alboukadel Kassambara and published by STHDA. This book was released on 2017-08-23 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although there are several good books on unsupervised machine learning, we felt that many of them are too theoretical. This book provides practical guide to cluster analysis, elegant visualization and interpretation. It contains 5 parts. Part I provides a quick introduction to R and presents required R packages, as well as, data formats and dissimilarity measures for cluster analysis and visualization. Part II covers partitioning clustering methods, which subdivide the data sets into a set of k groups, where k is the number of groups pre-specified by the analyst. Partitioning clustering approaches include: K-means, K-Medoids (PAM) and CLARA algorithms. In Part III, we consider hierarchical clustering method, which is an alternative approach to partitioning clustering. The result of hierarchical clustering is a tree-based representation of the objects called dendrogram. In this part, we describe how to compute, visualize, interpret and compare dendrograms. Part IV describes clustering validation and evaluation strategies, which consists of measuring the goodness of clustering results. Among the chapters covered here, there are: Assessing clustering tendency, Determining the optimal number of clusters, Cluster validation statistics, Choosing the best clustering algorithms and Computing p-value for hierarchical clustering. Part V presents advanced clustering methods, including: Hierarchical k-means clustering, Fuzzy clustering, Model-based clustering and Density-based clustering.

Hands-On Machine Learning with R

Download Hands-On Machine Learning with R PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000730433
Total Pages : 373 pages
Book Rating : 4.0/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Hands-On Machine Learning with R by : Brad Boehmke

Download or read book Hands-On Machine Learning with R written by Brad Boehmke and published by CRC Press. This book was released on 2019-11-07 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.