Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Kahler Poisson Algebras
Download Kahler Poisson Algebras full books in PDF, epub, and Kindle. Read online Kahler Poisson Algebras ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Kähler-Poisson Algebras by : Ahmed Al-Shujary
Download or read book Kähler-Poisson Algebras written by Ahmed Al-Shujary and published by Linköping University Electronic Press. This book was released on 2020-02-18 with total page 51 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this thesis, we introduce Kähler-Poisson algebras and study their basic properties. The motivation comes from differential geometry, where one can show that the Riemannian geometry of an almost Kähler manifold can be formulated in terms of the Poisson algebra of smooth functions on the manifold. It turns out that one can identify an algebraic condition in the Poisson algebra (together with a metric) implying that most geometric objects can be given a purely algebraic formulation. This leads to the definition of a Kähler-Poisson algebra, which consists of a Poisson algebra and a metric fulfilling an algebraic condition. We show that every Kähler- Poisson algebra admits a unique Levi-Civita connection on its module of inner derivations and, furthermore, that the corresponding curvature operator has all the classical symmetries. Moreover, we present a construction procedure which allows one to associate a Kähler-Poisson algebra to a large class of Poisson algebras. From a more algebraic perspective, we introduce basic notions, such as morphisms and subalgebras, as well as direct sums and tensor products. Finally, we initiate a study of the moduli space of Kähler-Poisson algebras; i.e for a given Poisson algebra, one considers classes of metrics giving rise to non-isomorphic Kähler-Poisson algebras. As it turns out, even the simple case of a Poisson algebra generated by two variables gives rise to a nontrivial classification problem. I denna avhandling introduceras Kähler-Poisson algebror och deras grundläggande egenskaper studeras. Motivationen till detta kommer från differentialgeometri där man kan visa att den metriska geometrin för en Kählermångfald kan formuleras i termer av Poisson algebran av släta funktioner på mångfalden. Det visar sig att man kan identifiera ett algebraiskt villkor i en Poissonalgebra (med en metrik) som gör det möjligt att formulera de flesta geometriska objekt på ett algebraiskt vis. Detta leder till definitionen av en Kähler-Poisson algebra, vilken utgörs av en Poissonalgebra och en metrik som tillsammans uppfyller ett kompatibilitetsvillkor. Vi visar att för varje Kähler-Poisson algebra så existerar det en Levi-Civita förbindelse på modulen som utgörs av de inre derivationerna, och att den tillhörande krökningsoperatorn har alla de klassiska symmetrierna. Vidare presenteras en konstruktion som associerar en Kähler-Poisson algebra till varje algebra i en stor klass av Poissonalgebror. Ur ett mer algebraiskt perspektiv så introduceras flera grundläggande begrepp, såsom morfier, delalgebror, direkta summor och tensorprodukter. Slutligen påbörjas en studie av modulirum för Kähler-Poisson algebror, det vill säga ekvivalensklasser av metriker som ger upphov till isomorfa Kähler-Poisson strukturer. Det visar sig att även i det enkla fallet med en Poisson algebra genererad av två variabler, så leder detta till ett icke-trivialt klassificeringsproblem.
Book Synopsis Kähler-Poisson Algebras by : Ahmed Al-Shujary
Download or read book Kähler-Poisson Algebras written by Ahmed Al-Shujary and published by Linköping University Electronic Press. This book was released on 2018-09-03 with total page 48 pages. Available in PDF, EPUB and Kindle. Book excerpt: The focus of this thesis is to introduce the concept of Kähler-Poisson algebras as analogues of algebras of smooth functions on Kähler manifolds. We first give here a review of the geometry of Kähler manifolds and Lie-Rinehart algebras. After that we give the definition and basic properties of Kähler-Poisson algebras. It is then shown that the Kähler type condition has consequences that allow for an identification of geometric objects in the algebra which share several properties with their classical counterparts. Furthermore, we introduce a concept of morphism between Kähler-Poisson algebras and show its consequences. Detailed examples are provided in order to illustrate the novel concepts.
Author :Camille Laurent-Gengoux Publisher :Springer Science & Business Media ISBN 13 :3642310907 Total Pages :470 pages Book Rating :4.6/5 (423 download)
Book Synopsis Poisson Structures by : Camille Laurent-Gengoux
Download or read book Poisson Structures written by Camille Laurent-Gengoux and published by Springer Science & Business Media. This book was released on 2012-08-27 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Poisson structures appear in a large variety of contexts, ranging from string theory, classical/quantum mechanics and differential geometry to abstract algebra, algebraic geometry and representation theory. In each one of these contexts, it turns out that the Poisson structure is not a theoretical artifact, but a key element which, unsolicited, comes along with the problem that is investigated, and its delicate properties are decisive for the solution to the problem in nearly all cases. Poisson Structures is the first book that offers a comprehensive introduction to the theory, as well as an overview of the different aspects of Poisson structures. The first part covers solid foundations, the central part consists of a detailed exposition of the different known types of Poisson structures and of the (usually mathematical) contexts in which they appear, and the final part is devoted to the two main applications of Poisson structures (integrable systems and deformation quantization). The clear structure of the book makes it adequate for readers who come across Poisson structures in their research or for graduate students or advanced researchers who are interested in an introduction to the many facets and applications of Poisson structures.
Book Synopsis Kahler Spaces, Nilpotent Orbits, and Singular Reduction by : Johannes Huebschmann
Download or read book Kahler Spaces, Nilpotent Orbits, and Singular Reduction written by Johannes Huebschmann and published by American Mathematical Soc.. This book was released on 2004 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt: For a stratified symplectic space, a suitable concept of stratified Kahler polarization encapsulates Kahler polarizations on the strata and the behaviour of the polarizations across the strata and leads to the notion of stratified Kahler space which establishes an intimate relationship between nilpotent orbits, singular reduction, invariant theory, reductive dual pairs, Jordan triple systems, symmetric domains, and pre-homogeneous spaces: The closure of a holomorphic nilpotent orbit or, equivalently, the closure of the stratum of the associated pre-homogeneous space of parabolic type carries a (positive) normal Kahler structure. In the world of singular Poisson geometry, the closures of principal holomorphic nilpotent orbits, positive definite hermitian JTS's, and certain pre-homogeneous spaces appear as different incarnations of the same structure. The closure of the principal holomorphic nilpotent orbit arises from a semisimple holomorphic orbit by contraction. Symplectic reduction carries a positive Kahler manifold to a positive normal Kahler space in such a way that the sheaf of germs of polarized functions coincides with the ordinary sheaf of germs of holomorphic functions. Symplectic reduction establishes a close relationship between singular reduced spaces and nilpotent orbits of the dual groups. Projectivization of holomorphic nilpotent orbits yields exotic (positive) stratified Kahler structures on complex projective spaces and on certain complex projective varieties including complex projective quadrics. The space of (in general twisted) representations of the fundamental group of a closed surface in a compact Lie group or, equivalently, a moduli space of central Yang-Mills connections on a principal bundle over a surface, inherits a (positive) normal (stratified) Kahler structure. Physical examples are provided by certain reduced spaces arising from angular momentum zero.
Book Synopsis Quantum Algebras and Poisson Geometry in Mathematical Physics by : Mikhail Vladimirovich Karasev
Download or read book Quantum Algebras and Poisson Geometry in Mathematical Physics written by Mikhail Vladimirovich Karasev and published by American Mathematical Soc.. This book was released on 2005 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents applications of Poisson geometry to some fundamental well-known problems in mathematical physics. This volume is suitable for graduate students and researchers interested in mathematical physics. It uses methods such as: unexpected algebras with non-Lie commutation relations, dynamical systems theory, and semiclassical asymptotics.
Book Synopsis Poisson Geometry in Mathematics and Physics by : Giuseppe Dito
Download or read book Poisson Geometry in Mathematics and Physics written by Giuseppe Dito and published by American Mathematical Soc.. This book was released on 2008 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a collection of articles by speakers at the Poisson 2006 conference. The program for Poisson 2006 was an overlap of topics that included deformation quantization, generalized complex structures, differentiable stacks, normal forms, and group-valued moment maps and reduction.
Book Synopsis The Breadth of Symplectic and Poisson Geometry by : Jerrold E. Marsden
Download or read book The Breadth of Symplectic and Poisson Geometry written by Jerrold E. Marsden and published by Springer Science & Business Media. This book was released on 2007-07-03 with total page 666 pages. Available in PDF, EPUB and Kindle. Book excerpt: * The invited papers in this volume are written in honor of Alan Weinstein, one of the world’s foremost geometers * Contributions cover a broad range of topics in symplectic and differential geometry, Lie theory, mechanics, and related fields * Intended for graduate students and working mathematicians, this text is a distillation of prominent research and an indication of future trends in geometry, mechanics, and mathematical physics
Book Synopsis Toeplitz Operators on Kähler Manifolds by : Tatyana Barron
Download or read book Toeplitz Operators on Kähler Manifolds written by Tatyana Barron and published by Springer. This book was released on 2018-07-24 with total page 89 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this Brief is to give a quick practical introduction into the subject of Toeplitz operators on Kähler manifolds, via examples, worked out carefully and in detail. Necessary background is included. Several theorems on asymptotics of Toeplitz operators are reviewed and illustrated by examples, including the case of tori and the 2-dimensional sphere. Applications in the context of multisymplectic and hyperkähler geometry are discussed. The book is suitable for graduate students, advanced undergraduate students, and any researchers.
Book Synopsis An Introduction to Extremal Kahler Metrics by : Gábor Székelyhidi
Download or read book An Introduction to Extremal Kahler Metrics written by Gábor Székelyhidi and published by American Mathematical Soc.. This book was released on 2014-06-19 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: A basic problem in differential geometry is to find canonical metrics on manifolds. The best known example of this is the classical uniformization theorem for Riemann surfaces. Extremal metrics were introduced by Calabi as an attempt at finding a higher-dimensional generalization of this result, in the setting of Kähler geometry. This book gives an introduction to the study of extremal Kähler metrics and in particular to the conjectural picture relating the existence of extremal metrics on projective manifolds to the stability of the underlying manifold in the sense of algebraic geometry. The book addresses some of the basic ideas on both the analytic and the algebraic sides of this picture. An overview is given of much of the necessary background material, such as basic Kähler geometry, moment maps, and geometric invariant theory. Beyond the basic definitions and properties of extremal metrics, several highlights of the theory are discussed at a level accessible to graduate students: Yau's theorem on the existence of Kähler-Einstein metrics, the Bergman kernel expansion due to Tian, Donaldson's lower bound for the Calabi energy, and Arezzo-Pacard's existence theorem for constant scalar curvature Kähler metrics on blow-ups.
Book Synopsis Galois Theory, Hopf Algebras, and Semiabelian Categories by : George Janelidze
Download or read book Galois Theory, Hopf Algebras, and Semiabelian Categories written by George Janelidze and published by American Mathematical Soc.. This book was released on 2004 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is based on talks given at the Workshop on Categorical Structures for Descent and Galois Theory, Hopf Algebras, and Semiabelian Categories held at The Fields Institute for Research in Mathematical Sciences (Toronto, ON, Canada). The meeting brought together researchers working in these interrelated areas. This collection of survey and research papers gives an up-to-date account of the many current connections among Galois theories, Hopf algebras, and semiabeliancategories. The book features articles by leading researchers on a wide range of themes, specifically, abstract Galois theory, Hopf algebras, and categorical structures, in particular quantum categories and higher-dimensional structures. Articles are suitable for graduate students and researchers,specifically those interested in Galois theory and Hopf algebras and their categorical unification.
Author :George Janelidze, Bodo Pareigis, and Walter Tholen Publisher :American Mathematical Soc. ISBN 13 :9780821871478 Total Pages :588 pages Book Rating :4.8/5 (714 download)
Book Synopsis Galois Theory, Hopf Algebras, and Semiabelian Categories by : George Janelidze, Bodo Pareigis, and Walter Tholen
Download or read book Galois Theory, Hopf Algebras, and Semiabelian Categories written by George Janelidze, Bodo Pareigis, and Walter Tholen and published by American Mathematical Soc.. This book was released on with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Classical and Quantum Physics by : G. Marmo
Download or read book Classical and Quantum Physics written by G. Marmo and published by Springer Nature. This book was released on 2019-10-26 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This proceedings is based on the interdisciplinary workshop held in Madrid, 5-9 March 2018, dedicated to Alberto Ibort on his 60th birthday. Alberto has great and significantly contributed to many fields of mathematics and physics, always with highly original and innovative ideas.Most of Albertos’s scientific activity has been motivated by geometric ideas, concepts and tools that are deeply related to the framework of classical dynamics and quantum mechanics.Let us mention some of the fields of expertise of Alberto Ibort:Geometric Mechanics; Constrained Systems; Variational Principles; Multisymplectic structures for field theories; Super manifolds; Inverse problem for Bosonic and Fermionic systems; Quantum Groups, Integrable systems, BRST Symmetries; Implicit differential equations; Yang-Mills Theories; BiHamiltonian Systems; Topology Change and Quantum Boundary Conditions; Classical and Quantum Control; Orthogonal Polynomials; Quantum Field Theory and Noncommutative Spaces; Classical and Quantum Tomography; Quantum Mechanics on phase space; Wigner-Weyl formalism; Lie-Jordan Algebras, Classical and Quantum; Quantum-to-Classical transition; Contraction of Associative Algebras; contact geometry, among many others.In each contribution, one may find not only technical novelties but also completely new way of looking at the considered problems. Even an experienced reader, reading Alberto's contributions on his field of expertise, will find new perspectives on the considered topic.His enthusiasm is happily contagious, for this reason he has had, and still has, very bright students wishing to elaborate their PhD thesis under his guidance.What is more impressive, is the broad list of rather different topics on which he has contributed.
Book Synopsis Infinite Dimensional Kähler Manifolds by : Alan Huckleberry
Download or read book Infinite Dimensional Kähler Manifolds written by Alan Huckleberry and published by Birkhäuser. This book was released on 2012-12-06 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Infinite dimensional manifolds, Lie groups and algebras arise naturally in many areas of mathematics and physics. Having been used mainly as a tool for the study of finite dimensional objects, the emphasis has changed and they are now frequently studied for their own independent interest. On the one hand this is a collection of closely related articles on infinite dimensional Kähler manifolds and associated group actions which grew out of a DMV-Seminar on the same subject. On the other hand it covers significantly more ground than was possible during the seminar in Oberwolfach and is in a certain sense intended as a systematic approach which ranges from the foundations of the subject to recent developments. It should be accessible to doctoral students and as well researchers coming from a wide range of areas. The initial chapters are devoted to a rather selfcontained introduction to group actions on complex and symplectic manifolds and to Borel-Weil theory in finite dimensions. These are followed by a treatment of the basics of infinite dimensional Lie groups, their actions and their representations. Finally, a number of more specialized and advanced topics are discussed, e.g., Borel-Weil theory for loop groups, aspects of the Virasoro algebra, (gauge) group actions and determinant bundles, and second quantization and the geometry of the infinite dimensional Grassmann manifold.
Book Synopsis Coherent Transform, Quantization and Poisson Geometry by : Mikhail Vladimirovich Karasev
Download or read book Coherent Transform, Quantization and Poisson Geometry written by Mikhail Vladimirovich Karasev and published by American Mathematical Soc.. This book was released on 1998 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume copntains three extensive articles written by Karasev and his pupils. Topics covered include the following: coherent states and irreducible representations for algebras with non-Lie permutation relations, Hamilton dynamics and quantization over stable isotropic submanifolds, and infinitesimal tensor complexes over degenerate symplectic leaves in Poisson manifolds. The articles contain many examples (including from physics) and complete proofs.
Book Synopsis Topological Geometrodynamics by : Matti Pitkanen
Download or read book Topological Geometrodynamics written by Matti Pitkanen and published by Luniver Press. This book was released on 2006 with total page 822 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological GeometroDynamics is a modification of general relativity inspired by the conceptual problems related to the definitions of inertial and gravitational energy in general relativity. Topological geometrodynamics can be also seen as a generalization of super string models. Physical space-times are seen as four-dimensional surfaces in certain eight-dimensional space. The choice of this space is fixed by symmetries of the standard model so that geometrization of known classical fields and elementary particle quantum numbers results. The notion of many-sheeted space-time allows re-interpretation of the structures of perceived world in terms of macroscopic space-time topology. The generalization of the number concept based on fusion of real numbers and p-adic number fields implies a further generalization of the space-time concept allowing to identify space-time correlates of cognition and intentionality. Quantum measurement theory extended to a quantum theory of consciousness becomes an organic part of theory. A highly non-trivial prediction is the existence of a fractal hierarchy of copies of standard model physics with dark matter identified in terms of macroscopic quantum phases characterized by dynamical and quantized Planck constant. The book is a comprehensive overview and analysis of topological geometrodynamics as a mathematical and physical theory.
Book Synopsis Long Time Behaviour of Classical and Quantum Systems by : Sandro Graffi
Download or read book Long Time Behaviour of Classical and Quantum Systems written by Sandro Graffi and published by World Scientific. This book was released on 2001 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is centered on the two minicourses conducted by C Liverani (Rome) and J Sjoestrand (Paris) on the return to equilibrium in classical statistical mechanics and the location of quantum resonances via semiclassical analysis, respectively. The other contributions cover related topics of classical and quantum mechanics, such as scattering theory, classical and quantum statistical mechanics, dynamical localization, quantum chaos, ergodic theory and KAM techniques.
Book Synopsis Long Time Behaviour Of Classical And Quantum Systems - Proceedings Of The Bologna Aptex International Conference by : Sandro Graffi
Download or read book Long Time Behaviour Of Classical And Quantum Systems - Proceedings Of The Bologna Aptex International Conference written by Sandro Graffi and published by World Scientific. This book was released on 2001-04-02 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is centered on the two minicourses conducted by C Liverani (Rome) and J Sjoestrand (Paris) on the return to equilibrium in classical statistical mechanics and the location of quantum resonances via semiclassical analysis, respectively. The other contributions cover related topics of classical and quantum mechanics, such as scattering theory, classical and quantum statistical mechanics, dynamical localization, quantum chaos, ergodic theory and KAM techniques.