IsoGeometric Analysis: A New Paradigm in the Numerical Approximation of PDEs

Download IsoGeometric Analysis: A New Paradigm in the Numerical Approximation of PDEs PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319423096
Total Pages : 203 pages
Book Rating : 4.3/5 (194 download)

DOWNLOAD NOW!


Book Synopsis IsoGeometric Analysis: A New Paradigm in the Numerical Approximation of PDEs by : Annalisa Buffa

Download or read book IsoGeometric Analysis: A New Paradigm in the Numerical Approximation of PDEs written by Annalisa Buffa and published by Springer. This book was released on 2016-10-05 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing an introduction to isogeometric methods with a focus on their mathematical foundations, this book is composed of four chapters, each devoted to a topic of special interests for isogeometric methods and their theoretical understanding. It contains a tutorial on splines and generalizations that are used in CAD parametrizations, and gives an overview of geometric modeling techniques that can be used within the isogeometric approach, with a focus on non-tensor product splines. Finally, it presents the mathematical properties of isogeometric spaces and spline spaces for vector field approximations, and treats in detail an application of fundamental importance: the isogeometric simulation of a viscous incompressible flow. The contributions were written by Carla Manni and Hendrik Speelers, Vibeke Skytt and Tor Dokken, Lourenco Beirao da Veiga, Annalisa Buffa, Giancarlo Sangalli and Rafael Vazquez, and finally by John Evans and Thomas J.R. Hughes.

Splines and PDEs: From Approximation Theory to Numerical Linear Algebra

Download Splines and PDEs: From Approximation Theory to Numerical Linear Algebra PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 331994911X
Total Pages : 325 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Splines and PDEs: From Approximation Theory to Numerical Linear Algebra by : Angela Kunoth

Download or read book Splines and PDEs: From Approximation Theory to Numerical Linear Algebra written by Angela Kunoth and published by Springer. This book was released on 2018-09-20 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book takes readers on a multi-perspective tour through state-of-the-art mathematical developments related to the numerical treatment of PDEs based on splines, and in particular isogeometric methods. A wide variety of research topics are covered, ranging from approximation theory to structured numerical linear algebra. More precisely, the book provides (i) a self-contained introduction to B-splines, with special focus on approximation and hierarchical refinement, (ii) a broad survey of numerical schemes for control problems based on B-splines and B-spline-type wavelets, (iii) an exhaustive description of methods for computing and analyzing the spectral distribution of discretization matrices, and (iv) a detailed overview of the mathematical and implementational aspects of isogeometric analysis. The text is the outcome of a C.I.M.E. summer school held in Cetraro (Italy), July 2017, featuring four prominent lecturers with different theoretical and application perspectives. The book may serve both as a reference and an entry point into further research.

Precursors of Isogeometric Analysis

Download Precursors of Isogeometric Analysis PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030038890
Total Pages : 587 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Precursors of Isogeometric Analysis by : Christopher G. Provatidis

Download or read book Precursors of Isogeometric Analysis written by Christopher G. Provatidis and published by Springer. This book was released on 2019-01-01 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained book addresses the three most popular computational methods in CAE (finite elements, boundary elements, collocation methods) in a unified way, bridging the gap between CAD and CAE. It includes applications to a broad spectrum of engineering (benchmark) application problems, such as elasto-statics/dynamics and potential problems (thermal, acoustics, electrostatics). It also provides a large number of test cases, with full documentation of original sources, making it a valuable resource for any student or researcher in FEA-related areas. The book, which assumes readers have a basic knowledge of FEA, can be used as additional reading for engineering courses as well as for other interdepartmental MSc courses.

Approximation Theory XV: San Antonio 2016

Download Approximation Theory XV: San Antonio 2016 PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319599127
Total Pages : 401 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Approximation Theory XV: San Antonio 2016 by : Gregory E. Fasshauer

Download or read book Approximation Theory XV: San Antonio 2016 written by Gregory E. Fasshauer and published by Springer. This book was released on 2017-07-19 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings are based on papers presented at the international conference Approximation Theory XV, which was held May 22–25, 2016 in San Antonio, Texas. The conference was the fifteenth in a series of meetings in Approximation Theory held at various locations in the United States, and was attended by 146 participants. The book contains longer survey papers by some of the invited speakers covering topics such as compressive sensing, isogeometric analysis, and scaling limits of polynomials and entire functions of exponential type. The book also includes papers on a variety of current topics in Approximation Theory drawn from areas such as advances in kernel approximation with applications, approximation theory and algebraic geometry, multivariate splines for applications, practical function approximation, approximation of PDEs, wavelets and framelets with applications, approximation theory in signal processing, compressive sensing, rational interpolation, spline approximation in isogeometric analysis, approximation of fractional differential equations, numerical integration formulas, and trigonometric polynomial approximation.

Isogeometric Analysis and Applications 2018

Download Isogeometric Analysis and Applications 2018 PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030498360
Total Pages : 279 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Isogeometric Analysis and Applications 2018 by : Harald van Brummelen

Download or read book Isogeometric Analysis and Applications 2018 written by Harald van Brummelen and published by Springer Nature. This book was released on 2021-01-13 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: This proceedings volume gathers a selection of outstanding research papers presented at the third Conference on Isogeometric Analysis and Applications, held in Delft, The Netherlands, in April 2018. This conference series, previously held in Linz, Austria, in 2012 and Annweiler am Trifels, Germany, in 2014, has created an international forum for interaction between scientists and practitioners working in this rapidly developing field. Isogeometric analysis is a groundbreaking computational approach that aims to bridge the gap between numerical analysis and computational geometry modeling by integrating the finite element method and related numerical simulation techniques into the computer-aided design workflow, and vice versa. The methodology has matured over the last decade both in terms of our theoretical understanding, its mathematical foundation and the robustness and efficiency of its practical implementations. This development has enabled scientists and practitioners to tackle challenging new applications at the frontiers of research in science and engineering and attracted early adopters for this his novel computer-aided design and engineering technology in industry. The IGAA 2018 conference brought together experts on isogeometric analysis theory and application, share their insights into challenging industrial applications and to discuss the latest developments as well as the directions of future research and development that are required to make isogeometric analysis an established mainstream technology.

Frontiers in Computational Fluid-Structure Interaction and Flow Simulation

Download Frontiers in Computational Fluid-Structure Interaction and Flow Simulation PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319964690
Total Pages : 493 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Frontiers in Computational Fluid-Structure Interaction and Flow Simulation by : Tayfun E. Tezduyar

Download or read book Frontiers in Computational Fluid-Structure Interaction and Flow Simulation written by Tayfun E. Tezduyar and published by Springer. This book was released on 2018-10-26 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational fluid-structure interaction and flow simulation are challenging research areas that bring solution and analysis to many classes of problems in science, engineering, and technology. Young investigators under the age of 40 are conducting much of the frontier research in these areas, some of which is highlighted in this book. The first author of each chapter took the lead role in carrying out the research presented. The topics covered include Computational aerodynamic and FSI analysis of wind turbines, Simulating free-surface FSI and fatigue-damage in wind-turbine structural systems, Aorta flow analysis and heart valve flow and structure analysis, Interaction of multiphase fluids and solid structures, Computational analysis of tire aerodynamics with actual geometry and road contact, and A general-purpose NURBS mesh generation method for complex geometries. This book will be a valuable resource for early-career researchers and students — not only those interested in computational fluid-structure interaction and flow simulation, but also other fields of engineering and science, including fluid mechanics, solid mechanics and computational mathematics – as it will provide them with inspiration and guidance for conducting their own successful research. It will also be of interest to senior researchers looking to learn more about successful research led by those under 40 and possibly offer collaboration to these researchers.

Isogeometric Analysis and Applications 2014

Download Isogeometric Analysis and Applications 2014 PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319233157
Total Pages : 301 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Isogeometric Analysis and Applications 2014 by : Bert Jüttler

Download or read book Isogeometric Analysis and Applications 2014 written by Bert Jüttler and published by Springer. This book was released on 2015-12-21 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: Isogeometric Analysis is a groundbreaking computational approach that promises the possibility of integrating the finite element method into conventional spline-based CAD design tools. It thus bridges the gap between numerical analysis and geometry, and moreover it allows to tackle new cutting edge applications at the frontiers of research in science and engineering. This proceedings volume contains a selection of outstanding research papers presented at the second International Workshop on Isogeometric Analysis and Applications, held at Annweiler, Germany, in April 2014.

Developments in Isogeometric Analysis and Application to High-Order Phase-Field Models of Biomembranes

Download Developments in Isogeometric Analysis and Application to High-Order Phase-Field Models of Biomembranes PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (129 download)

DOWNLOAD NOW!


Book Synopsis Developments in Isogeometric Analysis and Application to High-Order Phase-Field Models of Biomembranes by : Navid Valizadeh

Download or read book Developments in Isogeometric Analysis and Application to High-Order Phase-Field Models of Biomembranes written by Navid Valizadeh and published by . This book was released on 2021* with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Isogeometric analysis (IGA) is a numerical method for solving partial differential equations (PDEs), which was introduced with the aim of integrating finite element analysis with computer-aided design systems. The main idea of the method is to use the same spline basis functions which describe the geometry in CAD systems for the approximation of solution fields in the finite element method (FEM). Originally, NURBS which is a standard technology employed in CAD systems was adopted as basis functions in IGA but there were several variants of IGA using other technologies such as T-splines, PHT splines, and subdivision surfaces as basis functions. In general, IGA offers two key advantages over classical FEM: (i) by describing the CAD geometry exactly using smooth, high-order spline functions, the mesh generation process is simplified and the interoperability between CAD and FEM is improved, (ii) IGA can be viewed as a high-order finite element method which offers basis functions with high inter-element continuity and therefore can provide a primal variational formulation of high-order PDEs in a straightforward fashion. The main goal of this thesis is to further advance isogeometric analysis by exploiting these major advantages, namely precise geometric modeling and the use of smooth high-order splines as basis functions, and develop robust computational methods for problems with complex geometry and/or complex multi-physics. As the first contribution of this thesis, we leverage the precise geometric modeling of isogeometric analysis and propose a new method for its coupling with meshfree discretizations. We exploit the strengths of both methods by using IGA to provide a smooth, geometrically-exact surface discretization of the problem domain boundary, while the Reproducing Kernel Particle Method (RKPM) discretization is used to provide the volumetric discretization of the domain interior. The coupling strategy is based upon the higher-order consistency or reproducing conditions that are directly imposed in the physical domain. The resulting coupled method enjoys several favorable features: (i) it preserves the geometric exactness of IGA, (ii) it circumvents the need for global volumetric parameterization of the problem domain, (iii) it achieves arbitrary-order approximation accuracy while preserving higher-order smoothness of the discretization. Several numerical examples are solved to show the optimal convergence properties of the coupled IGA-RKPM formulation, and to demonstrate its effectiveness in constructing volumetric discretizations for complex-geometry objects. As for the next contribution, we exploit the use of smooth, high-order spline basis functions in IGA to solve high-order surface PDEs governing the morphological evolution of vesicles. These governing equations are often consisted of geometric PDEs, high-order PDEs on stationary or evolving surfaces, or a combination of them. We propose an isogeometric formulation for solving these PDEs. In the context of geometric PDEs, we consider phase-field approximations of mean curvature flow and Willmore flow problems and numerically study the convergence behavior of isogeometric analysis for these problems. As a model problem for high-order PDEs on stationary surfaces, we consider the Cahn-Hilliard equation on a sphere, where the surface is modeled using a phase-field approach. As for the high-order PDEs on evolving surfaces, a phase-field model of a deforming multi-component vesicle, which consists of two fourth-order nonlinear PDEs, is solved using the isogeometric analysis in a primal variational framework. Through several numerical examples in 2D, 3D and axisymmetric 3D settings, we show the robustness of IGA for solving the considered phase-field models. Finally, we present a monolithic, implicit formulation based on isogeometric analysis and generalized-alpha time integration for simulating hydrodynamics of vesicles according to a phase-field model. Compared to earlier works, the number of equations of the phase-field model which need to be solved is reduced by leveraging high continuity of NURBS functions, and the algorithm is extended to 3D settings. We use residual-based variational multi-scale method (RBVMS) for solving Navier-Stokes equations, while the rest of PDEs in the phase-field model are treated using a standard Galerkin-based IGA. We introduce the resistive immersed surface (RIS) method into the formulation which can be employed for an implicit description of complex geometries using a diffuse-interface approach. The implementation highlights the robustness of the RBVMS method for Navier-Stokes equations of incompressible flows with non-trivial localized forcing terms including bending and tension forces of the vesicle. The potential of the phase-field model and isogeometric analysis for accurate simulation of a variety of fluid-vesicle interaction problems in 2D and 3D is demonstrated.

Numerical Methods for PDEs

Download Numerical Methods for PDEs PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319946765
Total Pages : 323 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Numerical Methods for PDEs by : Daniele Antonio Di Pietro

Download or read book Numerical Methods for PDEs written by Daniele Antonio Di Pietro and published by Springer. This book was released on 2018-10-12 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume gathers contributions from participants of the Introductory School and the IHP thematic quarter on Numerical Methods for PDE, held in 2016 in Cargese (Corsica) and Paris, providing an opportunity to disseminate the latest results and envisage fresh challenges in traditional and new application fields. Numerical analysis applied to the approximate solution of PDEs is a key discipline in applied mathematics, and over the last few years, several new paradigms have appeared, leading to entire new families of discretization methods and solution algorithms. This book is intended for researchers in the field.

Isogeometric Analysis and Applications 2018

Download Isogeometric Analysis and Applications 2018 PDF Online Free

Author :
Publisher :
ISBN 13 : 9783030498375
Total Pages : 0 pages
Book Rating : 4.4/5 (983 download)

DOWNLOAD NOW!


Book Synopsis Isogeometric Analysis and Applications 2018 by : Harald van Brummelen

Download or read book Isogeometric Analysis and Applications 2018 written by Harald van Brummelen and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This proceedings volume gathers a selection of outstanding research papers presented at the third Conference on Isogeometric Analysis and Applications, held in Delft, The Netherlands, in April 2018. This conference series, previously held in Linz, Austria, in 2012 and Annweiler am Trifels, Germany, in 2014, has created an international forum for interaction between scientists and practitioners working in this rapidly developing field. Isogeometric analysis is a groundbreaking computational approach that aims to bridge the gap between numerical analysis and computational geometry modeling by integrating the finite element method and related numerical simulation techniques into the computer-aided design workflow, and vice versa. The methodology has matured over the last decade both in terms of our theoretical understanding, its mathematical foundation and the robustness and efficiency of its practical implementations. This development has enabled scientists and practitioners to tackle challenging new applications at the frontiers of research in science and engineering and attracted early adopters for this his novel computer-aided design and engineering technology in industry. The IGAA 2018 conference brought together experts on isogeometric analysis theory and application, share their insights into challenging industrial applications and to discuss the latest developments as well as the directions of future research and development that are required to make isogeometric analysis an established mainstream technology.

Isogeometric Analysis

Download Isogeometric Analysis PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470749091
Total Pages : 352 pages
Book Rating : 4.4/5 (77 download)

DOWNLOAD NOW!


Book Synopsis Isogeometric Analysis by : J. Austin Cottrell

Download or read book Isogeometric Analysis written by J. Austin Cottrell and published by John Wiley & Sons. This book was released on 2009-08-11 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: “The authors are the originators of isogeometric analysis, are excellent scientists and good educators. It is very original. There is no other book on this topic.” —René de Borst, Eindhoven University of Technology Written by leading experts in the field and featuring fully integrated colour throughout, Isogeometric Analysis provides a groundbreaking solution for the integration of CAD and FEA technologies. Tom Hughes and his researchers, Austin Cottrell and Yuri Bazilevs, present their pioneering isogeometric approach, which aims to integrate the two techniques of CAD and FEA using precise NURBS geometry in the FEA application. This technology offers the potential to revolutionise automobile, ship and airplane design and analysis by allowing models to be designed, tested and adjusted in one integrative stage. Providing a systematic approach to the topic, the authors begin with a tutorial introducing the foundations of Isogeometric Analysis, before advancing to a comprehensive coverage of the most recent developments in the technique. The authors offer a clear explanation as to how to add isogeometric capabilities to existing finite element computer programs, demonstrating how to implement and use the technology. Detailed programming examples and datasets are included to impart a thorough knowledge and understanding of the material. Provides examples of different applications, showing the reader how to implement isogeometric models Addresses readers on both sides of the CAD/FEA divide Describes Non-Uniform Rational B-Splines (NURBS) basis functions

Isogeometric Analysis

Download Isogeometric Analysis PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 710 pages
Book Rating : 4.:/5 (112 download)

DOWNLOAD NOW!


Book Synopsis Isogeometric Analysis by : Deepesh Toshniwal

Download or read book Isogeometric Analysis written by Deepesh Toshniwal and published by . This book was released on 2019 with total page 710 pages. Available in PDF, EPUB and Kindle. Book excerpt: Isogeometric Analysis or IGA was introduced by Hughes et al. (2005) to facilitate efficient design-through-analysis cycles for engineered objects. The goal of this technology is the unification of geometric modeling and engineering analysis, and this is realized by exploiting smooth spline spaces used for the former as finite element spaces required for the latter. As intended, this allows the use of geometrically exact representations for the purpose of analysis. Several new spline constructions have been devised on grid-like meshes since IGA’s inception. The excellent approximation and robustness offered by them has rejuvenated the study of high order methods, and IGA has been successfully applied to myriad problems. However, an unintended consequence of adopting a splinebased design-through-analysis paradigm has been the inheritance of open problems that lie at the intersection of the fields of modeling and approximation using splines. The first two parts of this dissertation focus on two such problems: splines of non-uniform degree and splines on unstructured meshes. The last part of the dissertation is focused on phase field modeling of corrosion using splines. The development of non-uniform degree splines is driven by the observation that relaxing the requirement for a spline’s polynomial pieces to have the same degree would be very powerful in the context of both geometric modeling and IGA. This dissertation provides a complete solution in the univariate setting. A mathematically sound foundation for an efficient algorithmic evaluation of univariate non-uniform degree splines is derived. It is shown that the algorithm outputs a nonuniform degree B-spline basis and that, furthermore, it can be applied to create C1 piecewise-NURBS of non-uniform degree with B-spline-like properties. In the bivariate setting, a theoretical study of the dimension of non-uniform degree splines on planar T-meshes and triangulations is carried out. Combinatorial lower and upper bounds on the spline space dimension are presented. For T-meshes, sufficient conditions for the bounds to coincide are provided, while for triangulations it is shown that the spline space dimension is stable in sufficiently high degree. Modeling complex geometries using only quadrilaterals leads, in general, to unstructured meshes. In locally structured regions of the mesh, smooth splines can be built following standard procedures. However, there is no canonical way of constructing smooth splines on an unstructured arrangement of quadrilateral elements. This dissertation proposes new spline constructions for the two types of unstructuredness that can be encountered – polar points (i.e., mesh vertices that are collapsed edges) and extraordinary points (i.e., mesh vertices shared by μ ≠ 4 quadrilaterals). On meshes containing polar points, smooth spline basis functions that form a convex partition of unity are built. Numerical tests presented to benchmark the construction indicate optimal approximation behavior. On meshes containing extraordinary points, two spline spaces are built, one for performing modeling and the other for approximation. The former is contained in the latter to ensure adherence to the philosophy of IGA. Excellent approximation behavior is observed during numerical benchmarking. Finally, a phase field model for corrosion is derived from first principles using Gurtin’s microforce theory and a Coleman–Noll type analysis. The derivation is general enough to include the effect of, for instance, mechanics on the process of corrosion, and an instance of such a coupled model is presented

Finite Element Methods for Flow Problems

Download Finite Element Methods for Flow Problems PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 9780471496663
Total Pages : 366 pages
Book Rating : 4.4/5 (966 download)

DOWNLOAD NOW!


Book Synopsis Finite Element Methods for Flow Problems by : Jean Donea

Download or read book Finite Element Methods for Flow Problems written by Jean Donea and published by John Wiley & Sons. This book was released on 2003-06-02 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Die Finite-Elemente-Methode, eines der wichtigsten in der Technik verwendeten numerischen Näherungsverfahren, wird hier gründlich und gut verständlich, aber ohne ein Zuviel an mathematischem Formalismus abgehandelt. Insbesondere geht es um die Anwendung der Methode auf Strömungsprobleme. Alle wesentlichen aktuellen Forschungsergebnisse wurden in den Band aufgenommen; viele davon sind bisher nur verstreut in der Originalliteratur zu finden.

Automated Solution of Differential Equations by the Finite Element Method

Download Automated Solution of Differential Equations by the Finite Element Method PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642230997
Total Pages : 723 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Automated Solution of Differential Equations by the Finite Element Method by : Anders Logg

Download or read book Automated Solution of Differential Equations by the Finite Element Method written by Anders Logg and published by Springer Science & Business Media. This book was released on 2012-02-24 with total page 723 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.

Numerical Models for Differential Problems

Download Numerical Models for Differential Problems PDF Online Free

Author :
Publisher : Springer Science & Business
ISBN 13 : 8847055229
Total Pages : 668 pages
Book Rating : 4.8/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Numerical Models for Differential Problems by : Alfio Quarteroni

Download or read book Numerical Models for Differential Problems written by Alfio Quarteroni and published by Springer Science & Business. This book was released on 2014-04-25 with total page 668 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this text, we introduce the basic concepts for the numerical modelling of partial differential equations. We consider the classical elliptic, parabolic and hyperbolic linear equations, but also the diffusion, transport, and Navier-Stokes equations, as well as equations representing conservation laws, saddle-point problems and optimal control problems. Furthermore, we provide numerous physical examples which underline such equations. We then analyze numerical solution methods based on finite elements, finite differences, finite volumes, spectral methods and domain decomposition methods, and reduced basis methods. In particular, we discuss the algorithmic and computer implementation aspects and provide a number of easy-to-use programs. The text does not require any previous advanced mathematical knowledge of partial differential equations: the absolutely essential concepts are reported in a preliminary chapter. It is therefore suitable for students of bachelor and master courses in scientific disciplines, and recommendable to those researchers in the academic and extra-academic domain who want to approach this interesting branch of applied mathematics.

Finite Element Methods for Maxwell's Equations

Download Finite Element Methods for Maxwell's Equations PDF Online Free

Author :
Publisher : Clarendon Press
ISBN 13 : 0191545228
Total Pages : 468 pages
Book Rating : 4.1/5 (915 download)

DOWNLOAD NOW!


Book Synopsis Finite Element Methods for Maxwell's Equations by : Peter Monk

Download or read book Finite Element Methods for Maxwell's Equations written by Peter Monk and published by Clarendon Press. This book was released on 2003-04-17 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the middle of the last century, computing power has increased sufficiently that the direct numerical approximation of Maxwell's equations is now an increasingly important tool in science and engineering. Parallel to the increasing use of numerical methods in computational electromagnetism there has also been considerable progress in the mathematical understanding of the properties of Maxwell's equations relevant to numerical analysis. The aim of this book is to provide an up to date and sound theoretical foundation for finite element methods in computational electromagnetism. The emphasis is on finite element methods for scattering problems that involve the solution of Maxwell's equations on infinite domains. Suitable variational formulations are developed and justified mathematically. An error analysis of edge finite element methods that are particularly well suited to Maxwell's equations is the main focus of the book. The methods are justified for Lipschitz polyhedral domains that can cause strong singularities in the solution. The book finishes with a short introduction to inverse problems in electromagnetism.

The Scaled Boundary Finite Element Method

Download The Scaled Boundary Finite Element Method PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119388457
Total Pages : 775 pages
Book Rating : 4.1/5 (193 download)

DOWNLOAD NOW!


Book Synopsis The Scaled Boundary Finite Element Method by : Chongmin Song

Download or read book The Scaled Boundary Finite Element Method written by Chongmin Song and published by John Wiley & Sons. This book was released on 2018-06-19 with total page 775 pages. Available in PDF, EPUB and Kindle. Book excerpt: An informative look at the theory, computer implementation, and application of the scaled boundary finite element method This reliable resource, complete with MATLAB, is an easy-to-understand introduction to the fundamental principles of the scaled boundary finite element method. It establishes the theory of the scaled boundary finite element method systematically as a general numerical procedure, providing the reader with a sound knowledge to expand the applications of this method to a broader scope. The book also presents the applications of the scaled boundary finite element to illustrate its salient features and potentials. The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation covers the static and dynamic stress analysis of solids in two and three dimensions. The relevant concepts, theory and modelling issues of the scaled boundary finite element method are discussed and the unique features of the method are highlighted. The applications in computational fracture mechanics are detailed with numerical examples. A unified mesh generation procedure based on quadtree/octree algorithm is described. It also presents examples of fully automatic stress analysis of geometric models in NURBS, STL and digital images. Written in lucid and easy to understand language by the co-inventor of the scaled boundary element method Provides MATLAB as an integral part of the book with the code cross-referenced in the text and the use of the code illustrated by examples Presents new developments in the scaled boundary finite element method with illustrative examples so that readers can appreciate the significant features and potentials of this novel method—especially in emerging technologies such as 3D printing, virtual reality, and digital image-based analysis The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation is an ideal book for researchers, software developers, numerical analysts, and postgraduate students in many fields of engineering and science.