Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Introduction To The Geometry Of N Dimensions
Download Introduction To The Geometry Of N Dimensions full books in PDF, epub, and Kindle. Read online Introduction To The Geometry Of N Dimensions ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Introduction to the Geometry of N Dimensions by : D. M.Y. Sommerville
Download or read book Introduction to the Geometry of N Dimensions written by D. M.Y. Sommerville and published by Courier Dover Publications. This book was released on 2020-03-18 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classic exploration of topics of perennial interest to geometers: fundamental ideas of incidence, parallelism, perpendicularity, angles between linear spaces, polytopes. Examines analytical geometry from projective and analytic points of view. 1929 edition.
Book Synopsis A Course in the Geometry of N Dimensions by : Maurice G. Kendall
Download or read book A Course in the Geometry of N Dimensions written by Maurice G. Kendall and published by Courier Corporation. This book was released on 2004-01-01 with total page 82 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text for undergraduate students provides a foundation for resolving proofs dependent on n-dimensional systems. The two-part treatment begins with simple figures in n dimensions and advances to examinations of the contents of hyperspheres, hyperellipsoids, hyperprisms, etc. The second part explores the mean in rectangular variation, the correlation coefficient in bivariate normal variation, Wishart's distribution, more. 1961 edition.
Book Synopsis Geometry: A Comprehensive Course by : Dan Pedoe
Download or read book Geometry: A Comprehensive Course written by Dan Pedoe and published by Courier Corporation. This book was released on 2013-04-02 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to vector algebra in the plane; circles and coaxial systems; mappings of the Euclidean plane; similitudes, isometries, Moebius transformations, much more. Includes over 500 exercises.
Book Synopsis Analytic Hyperbolic Geometry in N Dimensions by : Abraham Albert Ungar
Download or read book Analytic Hyperbolic Geometry in N Dimensions written by Abraham Albert Ungar and published by CRC Press. This book was released on 2014-12-17 with total page 623 pages. Available in PDF, EPUB and Kindle. Book excerpt: The concept of the Euclidean simplex is important in the study of n-dimensional Euclidean geometry. This book introduces for the first time the concept of hyperbolic simplex as an important concept in n-dimensional hyperbolic geometry. Following the emergence of his gyroalgebra in 1988, the author crafted gyrolanguage, the algebraic language that sheds natural light on hyperbolic geometry and special relativity. Several authors have successfully employed the author’s gyroalgebra in their exploration for novel results. Françoise Chatelin noted in her book, and elsewhere, that the computation language of Einstein described in this book plays a universal computational role, which extends far beyond the domain of special relativity. This book will encourage researchers to use the author’s novel techniques to formulate their own results. The book provides new mathematical tools, such as hyperbolic simplexes, for the study of hyperbolic geometry in n dimensions. It also presents a new look at Einstein’s special relativity theory.
Book Synopsis Introduction to Commutative Algebra and Algebraic Geometry by : Ernst Kunz
Download or read book Introduction to Commutative Algebra and Algebraic Geometry written by Ernst Kunz and published by Springer Science & Business Media. This book was released on 2012-11-06 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published in 1985, this classic textbook is an English translation of Einführung in die kommutative Algebra und algebraische Geometrie. As part of the Modern Birkhäuser Classics series, the publisher is proud to make Introduction to Commutative Algebra and Algebraic Geometry available to a wider audience. Aimed at students who have taken a basic course in algebra, the goal of the text is to present important results concerning the representation of algebraic varieties as intersections of the least possible number of hypersurfaces and—a closely related problem—with the most economical generation of ideals in Noetherian rings. Along the way, one encounters many basic concepts of commutative algebra and algebraic geometry and proves many facts which can then serve as a basic stock for a deeper study of these subjects.
Book Synopsis Higher Geometry by : Frederick Shenstone Woods
Download or read book Higher Geometry written by Frederick Shenstone Woods and published by . This book was released on 1922 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Geometry, Relativity and the Fourth Dimension by : Rudolf Rucker
Download or read book Geometry, Relativity and the Fourth Dimension written by Rudolf Rucker and published by Courier Corporation. This book was released on 2012-06-08 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exposition of fourth dimension, concepts of relativity as Flatland characters continue adventures. Topics include curved space time as a higher dimension, special relativity, and shape of space-time. Includes 141 illustrations.
Book Synopsis College Geometry by : Nathan Altshiller-Court
Download or read book College Geometry written by Nathan Altshiller-Court and published by Dover Publications. This book was released on 2013-12-30 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: The standard university-level text for decades, this volume offers exercises in construction problems, harmonic division, circle and triangle geometry, and other areas. 1952 edition, revised and enlarged by the author.
Author :Duncan m'Laren Young 18 Sommerville Publisher :Hassell Street Press ISBN 13 :9781013640193 Total Pages :242 pages Book Rating :4.6/5 (41 download)
Book Synopsis An Introduction to the Geometry of N Dimensions by : Duncan m'Laren Young 18 Sommerville
Download or read book An Introduction to the Geometry of N Dimensions written by Duncan m'Laren Young 18 Sommerville and published by Hassell Street Press. This book was released on 2021-09-09 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Book Synopsis Geometry of Convex Sets by : I. E. Leonard
Download or read book Geometry of Convex Sets written by I. E. Leonard and published by John Wiley & Sons. This book was released on 2015-11-02 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: A gentle introduction to the geometry of convex sets in n-dimensional space Geometry of Convex Sets begins with basic definitions of the concepts of vector addition and scalar multiplication and then defines the notion of convexity for subsets of n-dimensional space. Many properties of convex sets can be discovered using just the linear structure. However, for more interesting results, it is necessary to introduce the notion of distance in order to discuss open sets, closed sets, bounded sets, and compact sets. The book illustrates the interplay between these linear and topological concepts, which makes the notion of convexity so interesting. Thoroughly class-tested, the book discusses topology and convexity in the context of normed linear spaces, specifically with a norm topology on an n-dimensional space. Geometry of Convex Sets also features: An introduction to n-dimensional geometry including points; lines; vectors; distance; norms; inner products; orthogonality; convexity; hyperplanes; and linear functionals Coverage of n-dimensional norm topology including interior points and open sets; accumulation points and closed sets; boundary points and closed sets; compact subsets of n-dimensional space; completeness of n-dimensional space; sequences; equivalent norms; distance between sets; and support hyperplanes · Basic properties of convex sets; convex hulls; interior and closure of convex sets; closed convex hulls; accessibility lemma; regularity of convex sets; affine hulls; flats or affine subspaces; affine basis theorem; separation theorems; extreme points of convex sets; supporting hyperplanes and extreme points; existence of extreme points; Krein–Milman theorem; polyhedral sets and polytopes; and Birkhoff’s theorem on doubly stochastic matrices Discussions of Helly’s theorem; the Art Gallery theorem; Vincensini’s problem; Hadwiger’s theorems; theorems of Radon and Caratheodory; Kirchberger’s theorem; Helly-type theorems for circles; covering problems; piercing problems; sets of constant width; Reuleaux triangles; Barbier’s theorem; and Borsuk’s problem Geometry of Convex Sets is a useful textbook for upper-undergraduate level courses in geometry of convex sets and is essential for graduate-level courses in convex analysis. An excellent reference for academics and readers interested in learning the various applications of convex geometry, the book is also appropriate for teachers who would like to convey a better understanding and appreciation of the field to students. I. E. Leonard, PhD, was a contract lecturer in the Department of Mathematical and Statistical Sciences at the University of Alberta. The author of over 15 peer-reviewed journal articles, he is a technical editor for the Canadian Applied Mathematical Quarterly journal. J. E. Lewis, PhD, is Professor Emeritus in the Department of Mathematical Sciences at the University of Alberta. He was the recipient of the Faculty of Science Award for Excellence in Teaching in 2004 as well as the PIMS Education Prize in 2002.
Book Synopsis Computational Geometry by : Franco P. Preparata
Download or read book Computational Geometry written by Franco P. Preparata and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "This book offers a coherent treatment, at the graduate textbook level, of the field that has come to be known in the last decade or so as computational geometry. ... ... The book is well organized and lucidly written; a timely contribution by two founders of the field. It clearly demonstrates that computational geometry in the plane is now a fairly well-understood branch of computer science and mathematics. It also points the way to the solution of the more challenging problems in dimensions higher than two." #Mathematical Reviews#1 "... This remarkable book is a comprehensive and systematic study on research results obtained especially in the last ten years. The very clear presentation concentrates on basic ideas, fundamental combinatorial structures, and crucial algorithmic techniques. The plenty of results is clever organized following these guidelines and within the framework of some detailed case studies. A large number of figures and examples also aid the understanding of the material. Therefore, it can be highly recommended as an early graduate text but it should prove also to be essential to researchers and professionals in applied fields of computer-aided design, computer graphics, and robotics." #Biometrical Journal#2
Book Synopsis A Vector Space Approach to Geometry by : Melvin Hausner
Download or read book A Vector Space Approach to Geometry written by Melvin Hausner and published by Courier Dover Publications. This book was released on 2018-10-17 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: A fascinating exploration of the correlation between geometry and linear algebra, this text also offers elementary explanations of the role of geometry in other branches of math and science. 1965 edition.
Book Synopsis High-Dimensional Probability by : Roman Vershynin
Download or read book High-Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Book Synopsis Inversive Geometry by : Frank Morley
Download or read book Inversive Geometry written by Frank Morley and published by Courier Corporation. This book was released on 2014-01-15 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to algebraic geometry makes particular reference to the operation of inversion. Topics include Euclidean group; inversion; quadratics; finite inversive groups; parabolic, hyperbolic, and elliptic geometries; differential geometry; and more. 1933 edition.
Book Synopsis A Gyrovector Space Approach to Hyperbolic Geometry by : Abraham Ungar
Download or read book A Gyrovector Space Approach to Hyperbolic Geometry written by Abraham Ungar and published by Morgan & Claypool Publishers. This book was released on 2009-03-08 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: The mere mention of hyperbolic geometry is enough to strike fear in the heart of the undergraduate mathematics and physics student. Some regard themselves as excluded from the profound insights of hyperbolic geometry so that this enormous portion of human achievement is a closed door to them. The mission of this book is to open that door by making the hyperbolic geometry of Bolyai and Lobachevsky, as well as the special relativity theory of Einstein that it regulates, accessible to a wider audience in terms of novel analogies that the modern and unknown share with the classical and familiar. These novel analogies that this book captures stem from Thomas gyration, which is the mathematical abstraction of the relativistic effect known as Thomas precession. Remarkably, the mere introduction of Thomas gyration turns Euclidean geometry into hyperbolic geometry, and reveals mystique analogies that the two geometries share. Accordingly, Thomas gyration gives rise to the prefix "gyro" that is extensively used in the gyrolanguage of this book, giving rise to terms like gyrocommutative and gyroassociative binary operations in gyrogroups, and gyrovectors in gyrovector spaces. Of particular importance is the introduction of gyrovectors into hyperbolic geometry, where they are equivalence classes that add according to the gyroparallelogram law in full analogy with vectors, which are equivalence classes that add according to the parallelogram law. A gyroparallelogram, in turn, is a gyroquadrilateral the two gyrodiagonals of which intersect at their gyromidpoints in full analogy with a parallelogram, which is a quadrilateral the two diagonals of which intersect at their midpoints. Table of Contents: Gyrogroups / Gyrocommutative Gyrogroups / Gyrovector Spaces / Gyrotrigonometry
Book Synopsis Number, Shape, & Symmetry by : Diane L. Herrmann
Download or read book Number, Shape, & Symmetry written by Diane L. Herrmann and published by CRC Press. This book was released on 2012-10-18 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Through a careful treatment of number theory and geometry, Number, Shape, & Symmetry: An Introduction to Number Theory, Geometry, and Group Theory helps readers understand serious mathematical ideas and proofs. Classroom-tested, the book draws on the authors’ successful work with undergraduate students at the University of Chicago, seventh to tenth grade mathematically talented students in the University of Chicago’s Young Scholars Program, and elementary public school teachers in the Seminars for Endorsement in Science and Mathematics Education (SESAME). The first half of the book focuses on number theory, beginning with the rules of arithmetic (axioms for the integers). The authors then present all the basic ideas and applications of divisibility, primes, and modular arithmetic. They also introduce the abstract notion of a group and include numerous examples. The final topics on number theory consist of rational numbers, real numbers, and ideas about infinity. Moving on to geometry, the text covers polygons and polyhedra, including the construction of regular polygons and regular polyhedra. It studies tessellation by looking at patterns in the plane, especially those made by regular polygons or sets of regular polygons. The text also determines the symmetry groups of these figures and patterns, demonstrating how groups arise in both geometry and number theory. The book is suitable for pre-service or in-service training for elementary school teachers, general education mathematics or math for liberal arts undergraduate-level courses, and enrichment activities for high school students or math clubs.
Book Synopsis Conceptual Spaces by : Peter Gardenfors
Download or read book Conceptual Spaces written by Peter Gardenfors and published by MIT Press. This book was released on 2004-01-30 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: Within cognitive science, two approaches currently dominate the problem of modeling representations. The symbolic approach views cognition as computation involving symbolic manipulation. Connectionism, a special case of associationism, models associations using artificial neuron networks. Peter Gärdenfors offers his theory of conceptual representations as a bridge between the symbolic and connectionist approaches. Symbolic representation is particularly weak at modeling concept learning, which is paramount for understanding many cognitive phenomena. Concept learning is closely tied to the notion of similarity, which is also poorly served by the symbolic approach. Gärdenfors's theory of conceptual spaces presents a framework for representing information on the conceptual level. A conceptual space is built up from geometrical structures based on a number of quality dimensions. The main applications of the theory are on the constructive side of cognitive science: as a constructive model the theory can be applied to the development of artificial systems capable of solving cognitive tasks. Gärdenfors also shows how conceptual spaces can serve as an explanatory framework for a number of empirical theories, in particular those concerning concept formation, induction, and semantics. His aim is to present a coherent research program that can be used as a basis for more detailed investigations.