Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Introduction To The Galois Correspondence
Download Introduction To The Galois Correspondence full books in PDF, epub, and Kindle. Read online Introduction To The Galois Correspondence ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Introduction to the Galois Correspondence by : Maureen H. Fenrick
Download or read book Introduction to the Galois Correspondence written by Maureen H. Fenrick and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this presentation of the Galois correspondence, modern theories of groups and fields are used to study problems, some of which date back to the ancient Greeks. The techniques used to solve these problems, rather than the solutions themselves, are of primary importance. The ancient Greeks were concerned with constructibility problems. For example, they tried to determine if it was possible, using straightedge and compass alone, to perform any of the following tasks? (1) Double an arbitrary cube; in particular, construct a cube with volume twice that of the unit cube. (2) Trisect an arbitrary angle. (3) Square an arbitrary circle; in particular, construct a square with area 1r. (4) Construct a regular polygon with n sides for n > 2. If we define a real number c to be constructible if, and only if, the point (c, 0) can be constructed starting with the points (0,0) and (1,0), then we may show that the set of constructible numbers is a subfield of the field R of real numbers containing the field Q of rational numbers. Such a subfield is called an intermediate field of Rover Q. We may thus gain insight into the constructibility problems by studying intermediate fields of Rover Q. In chapter 4 we will show that (1) through (3) are not possible and we will determine necessary and sufficient conditions that the integer n must satisfy in order that a regular polygon with n sides be constructible.
Book Synopsis Differential Galois Theory through Riemann-Hilbert Correspondence by : Jacques Sauloy
Download or read book Differential Galois Theory through Riemann-Hilbert Correspondence written by Jacques Sauloy and published by American Mathematical Soc.. This book was released on 2016-12-07 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential Galois theory is an important, fast developing area which appears more and more in graduate courses since it mixes fundamental objects from many different areas of mathematics in a stimulating context. For a long time, the dominant approach, usually called Picard-Vessiot Theory, was purely algebraic. This approach has been extensively developed and is well covered in the literature. An alternative approach consists in tagging algebraic objects with transcendental information which enriches the understanding and brings not only new points of view but also new solutions. It is very powerful and can be applied in situations where the Picard-Vessiot approach is not easily extended. This book offers a hands-on transcendental approach to differential Galois theory, based on the Riemann-Hilbert correspondence. Along the way, it provides a smooth, down-to-earth introduction to algebraic geometry, category theory and tannakian duality. Since the book studies only complex analytic linear differential equations, the main prerequisites are complex function theory, linear algebra, and an elementary knowledge of groups and of polynomials in many variables. A large variety of examples, exercises, and theoretical constructions, often via explicit computations, offers first-year graduate students an accessible entry into this exciting area.
Book Synopsis Galois Connections and Applications by : K. Denecke
Download or read book Galois Connections and Applications written by K. Denecke and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: Galois connections provide the order- or structure-preserving passage between two worlds of our imagination - and thus are inherent in hu man thinking wherever logical or mathematical reasoning about cer tain hierarchical structures is involved. Order-theoretically, a Galois connection is given simply by two opposite order-inverting (or order preserving) maps whose composition yields two closure operations (or one closure and one kernel operation in the order-preserving case). Thus, the "hierarchies" in the two opposite worlds are reversed or transported when passing to the other world, and going forth and back becomes a stationary process when iterated. The advantage of such an "adjoint situation" is that information about objects and relationships in one of the two worlds may be used to gain new information about the other world, and vice versa. In classical Galois theory, for instance, properties of permutation groups are used to study field extensions. Or, in algebraic geometry, a good knowledge of polynomial rings gives insight into the structure of curves, surfaces and other algebraic vari eties, and conversely. Moreover, restriction to the "Galois-closed" or "Galois-open" objects (the fixed points of the composite maps) leads to a precise "duality between two maximal subworlds".
Book Synopsis A Course in Galois Theory by : D. J. H. Garling
Download or read book A Course in Galois Theory written by D. J. H. Garling and published by Cambridge University Press. This book was released on 1986 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook, based on lectures given over a period of years at Cambridge, is a detailed and thorough introduction to Galois theory.
Book Synopsis Foundations of Galois Theory by : M. M. Postnikov
Download or read book Foundations of Galois Theory written by M. M. Postnikov and published by Courier Corporation. This book was released on 2004-02-02 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by a prominent mathematician, this text offers advanced undergraduate and graduate students a virtually self-contained treatment of the basics of Galois theory. The source of modern abstract algebra and one of abstract algebra's most concrete applications, Galois theory serves as an excellent introduction to group theory and provides a strong, historically relevant motivation for the introduction of the basics of abstract algebra. This two-part treatment begins with the elements of Galois theory, focusing on related concepts from field theory, including the structure of important types of extensions and the field of algebraic numbers. A consideration of relevant facts from group theory leads to a survey of Galois theory, with discussions of normal extensions, the order and correspondence of the Galois group, and Galois groups of a normal subfield and of two fields. The second part explores the solution of equations by radicals, returning to the general theory of groups for relevant facts, examining equations solvable by radicals and their construction, and concluding with the unsolvability by radicals of the general equation of degree n ≥ 5.
Book Synopsis Topics in Galois Theory by : Jean-Pierre Serre
Download or read book Topics in Galois Theory written by Jean-Pierre Serre and published by CRC Press. This book was released on 2016-04-19 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on a course given by the author at Harvard University in the fall semester of 1988. The course focused on the inverse problem of Galois Theory: the construction of field extensions having a given finite group as Galois group. In the first part of the book, classical methods and results, such as the Scholz and Reichardt constructi
Download or read book Galois Theory written by David A. Cox and published by John Wiley & Sons. This book was released on 2012-03-27 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition ". . .will certainly fascinate anyone interested in abstractalgebra: a remarkable book!" —Monatshefte fur Mathematik Galois theory is one of the most established topics inmathematics, with historical roots that led to the development ofmany central concepts in modern algebra, including groups andfields. Covering classic applications of the theory, such assolvability by radicals, geometric constructions, and finitefields, Galois Theory, Second Edition delves into noveltopics like Abel’s theory of Abelian equations, casusirreducibili, and the Galois theory of origami. In addition, this book features detailed treatments of severaltopics not covered in standard texts on Galois theory,including: The contributions of Lagrange, Galois, and Kronecker How to compute Galois groups Galois's results about irreducible polynomials of primeor prime-squared degree Abel's theorem about geometric constructions on thelemniscates Galois groups of quartic polynomials in allcharacteristics Throughout the book, intriguing Mathematical Notes andHistorical Notes sections clarify the discussed ideas andthe historical context; numerous exercises and examples use Mapleand Mathematica to showcase the computations related to Galoistheory; and extensive references have been added to provide readerswith additional resources for further study. Galois Theory, Second Edition is an excellent book forcourses on abstract algebra at the upper-undergraduate and graduatelevels. The book also serves as an interesting reference for anyonewith a general interest in Galois theory and its contributions tothe field of mathematics.
Book Synopsis Exploratory Galois Theory by : John Swallow
Download or read book Exploratory Galois Theory written by John Swallow and published by Cambridge University Press. This book was released on 2004-10-11 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combining a concrete perspective with an exploration-based approach, Exploratory Galois Theory develops Galois theory at an entirely undergraduate level. The text grounds the presentation in the concept of algebraic numbers with complex approximations and assumes of its readers only a first course in abstract algebra. For readers with Maple or Mathematica, the text introduces tools for hands-on experimentation with finite extensions of the rational numbers, enabling a familiarity never before available to students of the subject. The text is appropriate for traditional lecture courses, for seminars, or for self-paced independent study by undergraduates and graduate students.
Book Synopsis Galois Groups and Fundamental Groups by : Tamás Szamuely
Download or read book Galois Groups and Fundamental Groups written by Tamás Szamuely and published by Cambridge University Press. This book was released on 2009-07-16 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: Assuming little technical background, the author presents the strong analogies between these two concepts starting at an elementary level.
Book Synopsis Galois Theory of Linear Differential Equations by : Marius van der Put
Download or read book Galois Theory of Linear Differential Equations written by Marius van der Put and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "This is a great book, which will hopefully become a classic in the subject of differential Galois theory. [...] the specialist, as well as the novice, have long been missing an introductory book covering also specific and advanced research topics. This gap is filled by the volume under review, and more than satisfactorily." Mathematical Reviews
Book Synopsis Galois Theories by : Francis Borceux
Download or read book Galois Theories written by Francis Borceux and published by Cambridge University Press. This book was released on 2001-02-22 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting from the classical finite-dimensional Galois theory of fields, this book develops Galois theory in a much more general context, presenting work by Grothendieck in terms of separable algebras and then proceeding to the infinite-dimensional case, which requires considering topological Galois groups. In the core of the book, the authors first formalize the categorical context in which a general Galois theorem holds, and then give applications to Galois theory for commutative rings, central extensions of groups, the topological theory of covering maps and a Galois theorem for toposes. The book is designed to be accessible to a wide audience: the prerequisites are first courses in algebra and general topology, together with some familiarity with the categorical notions of limit and adjoint functors. The first chapters are accessible to advanced undergraduates, with later ones at a graduate level. For all algebraists and category theorists this book will be a rewarding read.
Book Synopsis Galois Theory Through Exercises by : Juliusz Brzeziński
Download or read book Galois Theory Through Exercises written by Juliusz Brzeziński and published by Springer. This book was released on 2018-03-21 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook offers a unique introduction to classical Galois theory through many concrete examples and exercises of varying difficulty (including computer-assisted exercises). In addition to covering standard material, the book explores topics related to classical problems such as Galois’ theorem on solvable groups of polynomial equations of prime degrees, Nagell's proof of non-solvability by radicals of quintic equations, Tschirnhausen's transformations, lunes of Hippocrates, and Galois' resolvents. Topics related to open conjectures are also discussed, including exercises related to the inverse Galois problem and cyclotomic fields. The author presents proofs of theorems, historical comments and useful references alongside the exercises, providing readers with a well-rounded introduction to the subject and a gateway to further reading. A valuable reference and a rich source of exercises with sample solutions, this book will be useful to both students and lecturers. Its original concept makes it particularly suitable for self-study.
Download or read book Galois Theory written by Emil Artin and published by . This book was released on 2020-02 with total page 54 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author Emil Artin is known as one of the greatest mathematicians of the 20th century. He is regarded as a man who gave a modern outlook to Galois theory. Original lectures by the master. This emended edition is with completely new typesetting and corrections. The free PDF file available on the publisher's website www.bowwowpress.org
Book Synopsis Galois Representations and (Phi, Gamma)-Modules by : Peter Schneider
Download or read book Galois Representations and (Phi, Gamma)-Modules written by Peter Schneider and published by Cambridge University Press. This book was released on 2017-04-20 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed and self-contained introduction to a key part of local number theory, ideal for graduate students and researchers.
Book Synopsis Langlands Correspondence for Loop Groups by : Edward Frenkel
Download or read book Langlands Correspondence for Loop Groups written by Edward Frenkel and published by Cambridge University Press. This book was released on 2007-06-28 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first account of local geometric Langlands Correspondence, a new area of mathematical physics developed by the author.
Book Synopsis Introduction to the Galois Correspondence by : Maureen H. Fenrick
Download or read book Introduction to the Galois Correspondence written by Maureen H. Fenrick and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this presentation of the Galois correspondence, modem theories of groups and fields are used to study problems, some of which date back to the ancient Greeks. The techniques used to solve these problems, rather than the solutions themselves, are of primary importance. The ancient Greeks were concerned with constructibility problems. For example, they tried to determine if it was possible, using straightedge and compass alone, to perform any of the following tasks? (1) Double an arbitrary cube; in particular, construct a cube with volume twice that of the unit cube. (2) Trisect an arbitrary angle. (3) Square an arbitrary circle; in particular, construct a square with area 7r. (4) Construct a regular polygon with n sides for n > 2. If we define a real number c to be constructible if, and only if, the point (c,O) can be constructed starting with the points (0,0) and (1,0), then we may show that the set of constructible numbers is a subfield of the field R of real numbers containing the field Q of rational numbers. Such a subfield is called an intermediate field of Rover Q. We may thus gain insight into the constructibility problems by studying intermediate fields of Rover Q. In chapter 4 we will show that (1) through (3) are not possible and we will determine necessary and sufficient conditions that the integer n must satisfy in order that a regular polygon with n sides be constructible.
Book Synopsis Topological Galois Theory by : Askold Khovanskii
Download or read book Topological Galois Theory written by Askold Khovanskii and published by Springer. This book was released on 2014-10-10 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a detailed and largely self-contained description of various classical and new results on solvability and unsolvability of equations in explicit form. In particular, it offers a complete exposition of the relatively new area of topological Galois theory, initiated by the author. Applications of Galois theory to solvability of algebraic equations by radicals, basics of Picard–Vessiot theory, and Liouville's results on the class of functions representable by quadratures are also discussed. A unique feature of this book is that recent results are presented in the same elementary manner as classical Galois theory, which will make the book useful and interesting to readers with varied backgrounds in mathematics, from undergraduate students to researchers. In this English-language edition, extra material has been added (Appendices A–D), the last two of which were written jointly with Yura Burda.