Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Introduction To Proof Through Number Theory
Download Introduction To Proof Through Number Theory full books in PDF, epub, and Kindle. Read online Introduction To Proof Through Number Theory ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Book of Proof by : Richard H. Hammack
Download or read book Book of Proof written by Richard H. Hammack and published by . This book was released on 2016-01-01 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.
Book Synopsis Introduction to Proof in Abstract Mathematics by : Andrew Wohlgemuth
Download or read book Introduction to Proof in Abstract Mathematics written by Andrew Wohlgemuth and published by Courier Corporation. This book was released on 2014-06-10 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary purpose of this undergraduate text is to teach students to do mathematical proofs. It enables readers to recognize the elements that constitute an acceptable proof, and it develops their ability to do proofs of routine problems as well as those requiring creative insights. The self-contained treatment features many exercises, problems, and selected answers, including worked-out solutions. Starting with sets and rules of inference, this text covers functions, relations, operation, and the integers. Additional topics include proofs in analysis, cardinality, and groups. Six appendixes offer supplemental material. Teachers will welcome the return of this long-out-of-print volume, appropriate for both one- and two-semester courses.
Book Synopsis Proofs from THE BOOK by : Martin Aigner
Download or read book Proofs from THE BOOK written by Martin Aigner and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: According to the great mathematician Paul Erdös, God maintains perfect mathematical proofs in The Book. This book presents the authors candidates for such "perfect proofs," those which contain brilliant ideas, clever connections, and wonderful observations, bringing new insight and surprising perspectives to problems from number theory, geometry, analysis, combinatorics, and graph theory. As a result, this book will be fun reading for anyone with an interest in mathematics.
Book Synopsis Introduction to Proof Through Number Theory by : Bennett Chow
Download or read book Introduction to Proof Through Number Theory written by Bennett Chow and published by American Mathematical Society. This book was released on 2023-02-09 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lighten up about mathematics! Have fun. If you read this book, you will have to endure bad math puns and jokes and out-of-date pop culture references. You'll learn some really cool mathematics to boot. In the process, you will immerse yourself in living, thinking, and breathing logical reasoning. We like to call this proofs, which to some is a bogey word, but to us it is a boogie word. You will learn how to solve problems, real and imagined. After all, math is a game where, although the rules are pretty much set, we are left to our imaginations to create. Think of this book as blueprints, but you are the architect of what structures you want to build. Make sure you lay a good foundation, for otherwise your buildings might fall down. To help you through this, we guide you to think and plan carefully. Our playground consists of basic math, with a loving emphasis on number theory. We will encounter the known and the unknown. Ancient and modern inquirers left us with elementary-sounding mathematical puzzles that are unsolved to this day. You will learn induction, logic, set theory, arithmetic, and algebra, and you may one day solve one of these puzzles.
Book Synopsis An Introduction to Proof through Real Analysis by : Daniel J. Madden
Download or read book An Introduction to Proof through Real Analysis written by Daniel J. Madden and published by John Wiley & Sons. This book was released on 2017-09-12 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: An engaging and accessible introduction to mathematical proof incorporating ideas from real analysis A mathematical proof is an inferential argument for a mathematical statement. Since the time of the ancient Greek mathematicians, the proof has been a cornerstone of the science of mathematics. The goal of this book is to help students learn to follow and understand the function and structure of mathematical proof and to produce proofs of their own. An Introduction to Proof through Real Analysis is based on course material developed and refined over thirty years by Professor Daniel J. Madden and was designed to function as a complete text for both first proofs and first analysis courses. Written in an engaging and accessible narrative style, this book systematically covers the basic techniques of proof writing, beginning with real numbers and progressing to logic, set theory, topology, and continuity. The book proceeds from natural numbers to rational numbers in a familiar way, and justifies the need for a rigorous definition of real numbers. The mathematical climax of the story it tells is the Intermediate Value Theorem, which justifies the notion that the real numbers are sufficient for solving all geometric problems. • Concentrates solely on designing proofs by placing instruction on proof writing on top of discussions of specific mathematical subjects • Departs from traditional guides to proofs by incorporating elements of both real analysis and algebraic representation • Written in an engaging narrative style to tell the story of proof and its meaning, function, and construction • Uses a particular mathematical idea as the focus of each type of proof presented • Developed from material that has been class-tested and fine-tuned over thirty years in university introductory courses An Introduction to Proof through Real Analysis is the ideal introductory text to proofs for second and third-year undergraduate mathematics students, especially those who have completed a calculus sequence, students learning real analysis for the first time, and those learning proofs for the first time. Daniel J. Madden, PhD, is an Associate Professor of Mathematics at The University of Arizona, Tucson, Arizona, USA. He has taught a junior level course introducing students to the idea of a rigorous proof based on real analysis almost every semester since 1990. Dr. Madden is the winner of the 2015 Southwest Section of the Mathematical Association of America Distinguished Teacher Award. Jason A. Aubrey, PhD, is Assistant Professor of Mathematics and Director, Mathematics Center of the University of Arizona.
Book Synopsis How to Prove It by : Daniel J. Velleman
Download or read book How to Prove It written by Daniel J. Velleman and published by Cambridge University Press. This book was released on 2006-01-16 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.
Book Synopsis Journey into Mathematics by : Joseph J. Rotman
Download or read book Journey into Mathematics written by Joseph J. Rotman and published by Courier Corporation. This book was released on 2013-01-18 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: This treatment covers the mechanics of writing proofs, the area and circumference of circles, and complex numbers and their application to real numbers. 1998 edition.
Book Synopsis Mathematical Reasoning by : Theodore A. Sundstrom
Download or read book Mathematical Reasoning written by Theodore A. Sundstrom and published by Prentice Hall. This book was released on 2007 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on the formal development of mathematics, this book shows readers how to read, understand, write, and construct mathematical proofs.Uses elementary number theory and congruence arithmetic throughout. Focuses on writing in mathematics. Reviews prior mathematical work with “Preview Activities” at the start of each section. Includes “Activities” throughout that relate to the material contained in each section. Focuses on Congruence Notation and Elementary Number Theorythroughout.For professionals in the sciences or engineering who need to brush up on their advanced mathematics skills. Mathematical Reasoning: Writing and Proof, 2/E Theodore Sundstrom
Book Synopsis Fundamentals of Number Theory by : William J. LeVeque
Download or read book Fundamentals of Number Theory written by William J. LeVeque and published by Courier Corporation. This book was released on 2014-01-05 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This excellent textbook introduces the basics of number theory, incorporating the language of abstract algebra. A knowledge of such algebraic concepts as group, ring, field, and domain is not assumed, however; all terms are defined and examples are given — making the book self-contained in this respect. The author begins with an introductory chapter on number theory and its early history. Subsequent chapters deal with unique factorization and the GCD, quadratic residues, number-theoretic functions and the distribution of primes, sums of squares, quadratic equations and quadratic fields, diophantine approximation, and more. Included are discussions of topics not always found in introductory texts: factorization and primality of large integers, p-adic numbers, algebraic number fields, Brun's theorem on twin primes, and the transcendence of e, to mention a few. Readers will find a substantial number of well-chosen problems, along with many notes and bibliographical references selected for readability and relevance. Five helpful appendixes — containing such study aids as a factor table, computer-plotted graphs, a table of indices, the Greek alphabet, and a list of symbols — and a bibliography round out this well-written text, which is directed toward undergraduate majors and beginning graduate students in mathematics. No post-calculus prerequisite is assumed. 1977 edition.
Book Synopsis Proof and the Art of Mathematics by : Joel David Hamkins
Download or read book Proof and the Art of Mathematics written by Joel David Hamkins and published by MIT Press. This book was released on 2021-02-23 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: How to write mathematical proofs, shown in fully-worked out examples. This is a companion volume Joel Hamkins's Proof and the Art of Mathematics, providing fully worked-out solutions to all of the odd-numbered exercises as well as a few of the even-numbered exercises. In many cases, the solutions go beyond the exercise question itself to the natural extensions of the ideas, helping readers learn how to approach a mathematical investigation. As Hamkins asks, "Once you have solved a problem, why not push the ideas harder to see what further you can prove with them?" These solutions offer readers examples of how to write a mathematical proofs. The mathematical development of this text follows the main book, with the same chapter topics in the same order, and all theorem and exercise numbers in this text refer to the corresponding statements of the main text.
Book Synopsis Introduction · to Mathematical Structures and · Proofs by : Larry Gerstein
Download or read book Introduction · to Mathematical Structures and · Proofs written by Larry Gerstein and published by Springer Science & Business Media. This book was released on 2013-11-21 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a textbook for a one-term course whose goal is to ease the transition from lower-division calculus courses to upper-division courses in linear and abstract algebra, real and complex analysis, number theory, topology, combinatorics, and so on. Without such a "bridge" course, most upper division instructors feel the need to start their courses with the rudiments of logic, set theory, equivalence relations, and other basic mathematical raw materials before getting on with the subject at hand. Students who are new to higher mathematics are often startled to discover that mathematics is a subject of ideas, and not just formulaic rituals, and that they are now expected to understand and create mathematical proofs. Mastery of an assortment of technical tricks may have carried the students through calculus, but it is no longer a guarantee of academic success. Students need experience in working with abstract ideas at a nontrivial level if they are to achieve the sophisticated blend of knowledge, disci pline, and creativity that we call "mathematical maturity. " I don't believe that "theorem-proving" can be taught any more than "question-answering" can be taught. Nevertheless, I have found that it is possible to guide stu dents gently into the process of mathematical proof in such a way that they become comfortable with the experience and begin asking them selves questions that will lead them in the right direction.
Book Synopsis A Classical Introduction to Modern Number Theory by : K. Ireland
Download or read book A Classical Introduction to Modern Number Theory written by K. Ireland and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a revised and greatly expanded version of our book Elements of Number Theory published in 1972. As with the first book the primary audience we envisage consists of upper level undergraduate mathematics majors and graduate students. We have assumed some familiarity with the material in a standard undergraduate course in abstract algebra. A large portion of Chapters 1-11 can be read even without such background with the aid of a small amount of supplementary reading. The later chapters assume some knowledge of Galois theory, and in Chapters 16 and 18 an acquaintance with the theory of complex variables is necessary. Number theory is an ancient subject and its content is vast. Any intro ductory book must, of necessity, make a very limited selection from the fascinat ing array of possible topics. Our focus is on topics which point in the direction of algebraic number theory and arithmetic algebraic geometry. By a careful selection of subject matter we have found it possible to exposit some rather advanced material without requiring very much in the way oftechnical background. Most of this material is classical in the sense that is was dis covered during the nineteenth century and earlier, but it is also modern because it is intimately related to important research going on at the present time.
Book Synopsis Number Theory Through Inquiry by : David C. Marshall
Download or read book Number Theory Through Inquiry written by David C. Marshall and published by American Mathematical Soc.. This book was released on 2020-08-21 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: Number Theory Through Inquiry is an innovative textbook that leads students on a carefully guided discovery of introductory number theory. The book has two equally significant goals. One goal is to help students develop mathematical thinking skills, particularly, theorem-proving skills. The other goal is to help students understand some of the wonderfully rich ideas in the mathematical study of numbers. This book is appropriate for a proof transitions course, for an independent study experience, or for a course designed as an introduction to abstract mathematics. Math or related majors, future teachers, and students or adults interested in exploring mathematical ideas on their own will enjoy Number Theory Through Inquiry. Number theory is the perfect topic for an introduction-to-proofs course. Every college student is familiar with basic properties of numbers, and yet the exploration of those familiar numbers leads us to a rich landscape of ideas. Number Theory Through Inquiry contains a carefully arranged sequence of challenges that lead students to discover ideas about numbers and to discover methods of proof on their own. It is designed to be used with an instructional technique variously called guided discovery or Modified Moore Method or Inquiry Based Learning (IBL). Instructors' materials explain the instructional method. This style of instruction gives students a totally different experience compared to a standard lecture course. Here is the effect of this experience: Students learn to think independently: they learn to depend on their own reasoning to determine right from wrong; and they develop the central, important ideas of introductory number theory on their own. From that experience, they learn that they can personally create important ideas, and they develop an attitude of personal reliance and a sense that they can think effectively about difficult problems. These goals are fundamental to the educational enterprise within and beyond mathematics.
Book Synopsis A Logical Introduction to Proof by : Daniel W. Cunningham
Download or read book A Logical Introduction to Proof written by Daniel W. Cunningham and published by Springer Science & Business Media. This book was released on 2012-09-19 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is intended for students who want to learn how to prove theorems and be better prepared for the rigors required in more advance mathematics. One of the key components in this textbook is the development of a methodology to lay bare the structure underpinning the construction of a proof, much as diagramming a sentence lays bare its grammatical structure. Diagramming a proof is a way of presenting the relationships between the various parts of a proof. A proof diagram provides a tool for showing students how to write correct mathematical proofs.
Book Synopsis Friendly Introduction to Number Theory, a (Classic Version) by : Joseph Silverman
Download or read book Friendly Introduction to Number Theory, a (Classic Version) written by Joseph Silverman and published by . This book was released on 2017-02-13 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: For one-semester undergraduate courses in Elementary Number Theory This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles. A Friendly Introduction to Number Theory, 4th Edition is designed to introduce students to the overall themes and methodology of mathematics through the detailed study of one particular facet-number theory. Starting with nothing more than basic high school algebra, students are gradually led to the point of actively performing mathematical research while getting a glimpse of current mathematical frontiers. The writing is appropriate for the undergraduate audience and includes many numerical examples, which are analyzed for patterns and used to make conjectures. Emphasis is on the methods used for proving theorems rather than on specific results.
Book Synopsis A TeXas Style Introduction to Proof by : Ron Taylor
Download or read book A TeXas Style Introduction to Proof written by Ron Taylor and published by American Mathematical Soc.. This book was released on 2019-07-26 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: A TeXas Style Introduction to Proof is an IBL textbook designed for a one-semester course on proofs (the “bridge course”) that also introduces TeX as a tool students can use to communicate their work. As befitting “textless” text, the book is, as one reviewer characterized it, “minimal.” Written in an easy-going style, the exposition is just enough to support the activities, and it is clear, concise, and effective. The book is well organized and contains ample carefully selected exercises that are varied, interesting, and probing, without being discouragingly difficult.
Book Synopsis Elementary Introduction to Number Theory by : Calvin T. Long
Download or read book Elementary Introduction to Number Theory written by Calvin T. Long and published by D.C. Heath. This book was released on 1972 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: